TempO-seq and RNA-seq Gene Expression Levels are Highly
Correlated for Most Genes: A Comparison Using 39 Human Cell Lines
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Why care about transcriptomics data?

*The EPA high-throughput transcriptomics (HTTr) team is
working on identifying patterns of effect when chemicals
impact the same gene target

*This research can help us to predict the bioactivity of
chemicals (without animal exposures)
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e Quantifying levels of mRNA in cells is
helpful for understanding changes in gene
expression (such as in response to
chemical exposure)
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* There are different technologies for mRNA
sequencing, including:

* RNA-seq using lllumina
* TempO-seq from BioSpyder

Figure 1: An overview of the flow of information from DNA to protein in a eukaryote
d Ca n Seq U e n Ce m R N A a C rOSS th e h U m a n First, both coding and noncoding regions of DNA are transcribed into mMRNA. Some regions are removed (introns) during
H initial MRNA processing. The remaining exons are then spliced together, and the spliced mRNA molecule (red) is
ge n O m e (a p p rOXI m ate |y 20[ OOO ge n eS) prepared for export out of the nucleus through addition of an endcap (sphere) and a polyA tail. Once in the cytoplasm,

the mRNA can be used to construct a protein.
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RNA-seq Method

(more established)

Key features:
* Gold-standard, established method

* Non-targeted sequencing of RNA, so all RNA
is quantified and species type does not have
to be known

* Requires purification of RNA before
guantification

* Fragments of RNA are sequenced and later
aligned for data analysis, requiring significant
computing resources

A. Library Preparation

Genomic DNA
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Sequencing
Library

NGS library is prepared by fragmenting a gDNA sample and
ligating specialized adapters to bath fragment ends.

C. Sequencing
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Data is exported to an output file l

Cluster 1 > Read 1: GAGT...
Cluster 2 > Read 2: TTGA...
Cluster 3 > Read 3: CTAG...
Cluster 4 > Read 4: ATAC... Text File

Sequencing reagents, including fluorescently labeled nucleo-
tides, are added and the first base is incorporated. The flow
cell is imaged and the emission from each cluster is recorded.
The emission wavelength and intensity are used to identify
the base. This cycle is repeated “n” times to create a read
length of “n” bases.

Figure 3: Next-Generation Sequencing Chemistry Overview.

B. Cluster Amplification

l Flow Cell

Bridge Amplification
Cycles

Clusters

Library is loaded into a flow cell and the fragments hybridize
to the flow cell surface. Each bound fragment is amplified into
a clonal cluster through bridge amplification.

D. Alignment & Data Anaylsis

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
AGATGGTATTG
Reads GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

Reference  AGATGG TATTGCAATTTGACAT

Genome

Reads are aligned to a reference sequence with bioinformatics
software. After alignment, differences between the reference
genome and the newly sequenced reads can be identified.




TempO-seq Method

(newer technology)

Key features:

Easier sample prep because lysed cells can be
used

Less sample material is needed (picograms
instead of nanograms)

Possible to customize which transcripts are
guantified

Can be less expensive per sample at high scale

Must have detector oligo (DO) probes for the
species, only quantifies RNA for which there is a
tag to measure it
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Previous Research: prior case studies show TempO-seq is as consistent
and sensitive at detecting changes in gene expression as RNA-seq

Fresh cell and tissue samples:

Yeakley 2017: found that TempO-Seq had high correlation with fold differences measured by RNA-seq (R? = 0.9) for more than 20,000 targets
following exposure of MCF-7 cells to the histone deacetylase inhibitor Trichostatin A (TSA).

Bushel 2018: compared data from the TempO-seq S1500+ surrogate transcriptome (2,284 genes) to whole transcriptome RNA-seq. Purified

RNA from liver samples of rats showed some technological platform differences but the statistical analysis grouped by the 5 different
mechanisms of action (MOAs) for the 15 chemicals.

TempO-seq data had a higher (better) signal to noise ratio, less unexplained variance, and more reproducibility between biological

replicates compared to RNA-seq, which they found to be partly due to TempO-seq having less variation in detection of lowly expressed
genes.

Frozen and formalin-fixed paraffin-embedded (FFPE) samples:

Turnbull 2020: recommended TempO-seq as the preferable choice when analyzing human breast cancer samples with very limited quantity.

Cannizzo 2022: determined that TempO-seq provided more consistent fold-change results for differentially expressed genes (DEGs) within
frozen and FFPE mouse liver samples.



Previous Research: prior case studies show TempO-seq is as consistent
and sensitive at detecting changes in gene expression as RNA-seq

Fresh cell and tissue samples:

Yeakley 2017: found that TempO-Seq had high correlation with fold differences measured by RNA-seq (R? = 0.9) for more than 20,000 targets
following exposure of MCF-7 cells to the histone deacetylase inhibitor Trichostatin A (TSA).

Bushel 2018: compared data from the TempO-seq S1500+ surrogate transcriptome (2,284 genes) to whole transcriptome RNA-seq. Purified

RNA from liver samples of rats showed some technological platform differences but the statistical analysis grouped by the 5 different
mechanisms of action (MOAs) for the 15 chemicals.

TempO-seq data had a higher (better) signal to noise ratio, less unexplained variance, and more reproducibility between biological

replicates compared to RNA-seq, which they found to be partly due to TempO-seq having less variation in detection of lowly expressed
genes.

Frozen and formalin-fixed paraffin-embedded (FFPE) samples:

Turnbull 2020: recommended TempO-seq as the preferable choice when analyzing human breast cancer samples with very limited quantity.

Cannizzo 2022: determined that TempO-seq provided more consistent fold-change results for differentially expressed genes (DEGs) within
frozen and FFPE mouse liver samples.

A need remained for comparing lysed cells for the full transcriptome
baseline gene expression in human samples across more cell types




TempO-seq: EPA Phase 1 and Phase 2 Data

Baseline gene expression

Both of these TempO-seq data sets were 2
generated at the EPA in 2018-2019
* Phase 1 =6 million read depth
* Phase 2 =4.5 million read depth

Clinton Willis performed sample
collection for both data sets

Cells came from independent cultures
but were from the same cryostocks



RNA-seq data: Human Protein Atlas

HUMAN PROTEIN ATLAS

* Publicly available RNA and protein baseline =0
expression data for many tissues of the i e Q)
human body e ——
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* RNA-seq data at approximately 20 million o
reads depth -

 More details: HPA is a Swedish-based program o
started in 2003 with the aim to map all the human (7]
proteins in cells, tissues and organs using o
integration of various omics technologies, including o
antibody-based imaging, mass spectrometry-based = ™
proteomics, transcriptomics and systems biology




Step 1. Compare the
TempO-seq Phase 1 and
Phase 2 Data Sets



Common Cell Types: TempO-seq Phase 1 and Phase 2

Cell Line

MCEF-7

U-2 OS

HepG2

Daudi

CCD-18Co

NCI-H1092

ExPASy
CelloSaurus
Accession

CVCL_0031

CVCL_0042

CVCL_0027

CVCL_0008

CVCL_2379

CVCL_1454

Tissue Origin Disease

Breast Adenocarcinoma
Bone Osteosarcoma
Liver Hepatoblastoma
Peripheral Blood Burkitt’s
(B lymphoblast) Lymphoma
Colon none
Small cell lung
Lung cancer (stage E

carcinoma)

Growth
Mode

adherent

adherent

adherent

suspension

adherent

suspension

Morphology LR
epithelial (HT';TEETM)
epithelial (HT'A;_S)SG:TM)
epithelial (HB:A;F()CGC5TM)

lymphoblast (CCﬁTZClETM)
fibroblast (CRSLCL;TM)

oz ATCC

(CRL-5855™)



Pearson correlations for TempO-seq Phase 1 and Phase 2 show strong reproducibility

The average across technical replicates was 0.98 (95% Cl: 0.97-0.99) when averaged across both Phase 1 and Phase 2.

When comparing the technical replicate data across the two TempO-seq phases, the average was 0.93 (95% Cl: 0.90-0.96).
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Principal PCA is an unsupervised
Component dimensionality reduction
Analysis method for visualizing
(PCA) patterns in data




PC2, 18% Variance

Principal Component Analysis (PCA)

PCA shows that the replicate data from the two TempO-seq data sets group well by cell line
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PC2, 18% Variance

Principal Component Analysis (PCA)
PCA shows that the replicate data from the two TempO-seq data sets group well by cell type

b) Histogram of PC1 Rotation Values
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PC2, 18% Variance

Principal Component Analysis (PCA)
PCA shows that the replicate data from the two TempO-seq data sets group well by cell type

b) Histogram of PC1 Rotation Values
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Step 2. Compare the
Combined TempO-seq Data
to RNA-seq



Data TempO-seq
Cell Line Tissue Origin Disease or Cell Line Growth Mode
Com parison Phase

1 A549 Lung Carcinoma Adherent
TvR 1 A704 Kidney Renal Cell Carcinoma Adherent
TvR 1 ASC52Telo Adipose Tissue Mesenchymal Stem Cell Adherent
TvR 1 BHY Upper Aerodigestive Tract  Oral Squamous Cell carcinoma Adherent
TvR 2 BT-483 Breast Ductal Carcinoma Adherent
TvR 2 CAL-148 Breast Ductal Adenocarcinoma Mixed
TvR 2 CAL-78 Muscle Chondrosarcoma Adherent
TvT, TVR 1,2 CCD-18Co Colon None (Fibroblast) Adherent
39 Ce" Iines were TvT, TvVR 1,2 Daudi Lymphoid Burkitt’s Lymphoma Suspension
TvR 1 DMS 454 Lung Small Cell Lung Carcinoma Adherent
TvR 2 DoHH2 Lymphoid B Cell Lymphoma Suspension
CO m pa red fO r TvR 1 DV-90 Lung Adenocarcinoma Adherent
TvR 2 EFM-19 Breast Ductal Carcinoma Adherent
Tem pO'Seq VS RNA'Seq TvR 1 HBEC3-KT Lung Bronchial Epithelia Adherent
TvT, TvR 1,2 HepG2 Liver Hepatoblastoma Adherent
TvR 2 HOS Bone Osteosarcoma Adherent
TvR 2 Hs.839.T Skin Melanoma Adherent
TvR 1 hTERT-HME1 Breast Breast Epithelium Adherent
TvR 1 hTERT-RPE1 Eye Pigmented Epithelium Adherent
H . TvR 2 Huh-1 Liver Hepatoma Adherent
11 Tlssue types' TvR 2 Huh-7 Liver Hepatoblastoma Adherent
Lu ng, bIOOd, |iver’ kidney’ br‘east’ TvR 1 HUVEC/TERT2 Umbilical Cord Vascular Endothelium Adherent
. TvR 1 KP-N-RT-BM-1 Central Nervous System Neuroblastoma Adherent
bone, EVE, VaSCUIar endOthehum, TvT, TVR 1,2 MCF7 Breast Adenocarcinoma Adherent
. . . TvR 2 MG-63 Bone Osteosarcoma Adherent
Skl n' bra I n' ad I pose TvR 2 MHH-CALL-4 Lymphoid B Cell Lymphoma Suspension
TvT, TVR 1,2 NCI-H1092 Lung Small cell lung cancer (stage E carcinoma) Suspension
TvR 2 NCI-H1105 Lung Small Cell Lung Cancer Suspension
L ThiS represents a Significant TvR 2 NCI-H1436 Lung Small Cell Lung Cancer Suspension
. . : TvR 2 NCI-H2106 Lung Non-small Cell Lung Cancer Suspension
eXpan.Slon u_pon prEVIOUS StUd'es’ TvR 2 NCI-H2171 Lung Small Cell Lung Cancer Suspension
covering 4 tissue types: blOOd, TvR 2 PLC/PRF/5 Liver Hepatoma Adherent
breast, /iVEf; and prostate cancer TvR 1 RPTEC/TERT1 Kidney Proximal Tubule Epithelium Adherent
TvR 2 Sa0s-2 Bone Osteosarcoma Adherent
TvR 1 SET-2 Lymphoid Acute Megakaryoblastic Leukemia Suspension
TvR 1 SK-MEL-28 Skin Melanoma Adherent
TvR 2 SU-DHL-6 Lymphoid Large / B Cell Lymphoma Suspension
TvR 2 T-47D Breast Ductal Carcinoma Adherent
TvR 1 TIME Skin Dermal Microvascular Endothelium Adherent
TvT, TVR 1, U-2 0S Bone Osteosarcoma Adherent



Understanding the
data distributions

Histograms for TempO-seq data (left)

vs RNA-seq data (right)

Showing two cell types of interest

TempO-seq data; log2(CPM+1); “.x”

RNA-seq data; log2(TPM+1);
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minus
around zero

TempO-seq
RNA-seq
log2 data is
centered
across all 39
cell types

(TPM) were deemed

Cell Type
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Data shown for 19,290 overlapping genes




Cell Type
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PC1, 32% Variance PERMANOVA results across all PCs for TempO-seq vs RNA-seq
log,(EPM+1) showed that, in total, the platform effect accounted

for 31% of the total variance (R* = 0.31, p = 0.001).




Which genes are
non-concordant and are

driving the platform
divergence?




Which genes are
non-concordant and are

driving the platform
divergence?

Genes with the
greatest difference
In log2 expression
levels between
TempO-seq and
RNA-seq were
progressively
removed until the
PERMANOVA
variance explained
(R?) for platform
effect across all
PCs was < 10%




Non-concordant genes shown in red (3,810 genes of 19,290 genes)

Genes that were expressed (25EPM) with log,(EPM+1) diff > 1.47 and < -2.09
were non-concordant between TempO-seq and RNA-seq

87" percentile (1.47)
13t percentile (-2.09)

After removal of the 3,810
most non-concordant genes,
PERMANOVA on the PCs for
the remaining 15,480
concordant genes had < 10%
variance explained by
platform divergence
(R?>=0.099, p = 0.001)
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The 3,810 Non-concordant genes had clear differences
in expression level that were consistent across cell types
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Gene Ontology (GO) Analysis:
Evaluating patterns among non-concordant genes
using MSigDB signatures

e Assessed expression genes: Required a minimum expression of 25 CPM in
TempO-seq or 25 TPM in RNA-seq (10,487 genes). Of those, there were 3,810
genes that were non-concordant and 6,677 genes were concordant.

e GO signature requirements: We required at least 10 genes from the GO
signature to be within the list of 10,487 expressed genes. We also required at
least 50% of the genes within the GO signature to be in the list of 10,487
expressed genes that were retained for analysis.

e This resulted in 3,935 GO signatures being retained in our analysis out of
the full list of 10,461 GOs from Molecular Signatures Database Human
Collections (MSigDB).

e Odds ratios: Odds of a GO signature being enriched with more non-concordant
genes were calculated.



Example of GO filtering step

signature (sig)

GOBP_10_FORMYLTETRAHYDROFOL
ATE_METABOLIC_PROCESS

GOBP_3_PHOSPHOADENOSINE_5_P
HOSPHOSULFATE_ METABOLIC_PROC
ESS

GOBP_ACETATE_ESTER_METABOLIC
_PROCESS

GOBP_2FE_2S_CLUSTER_ASSEMBLY

GOBP_2_OXOGLUTARATE_METABOL
IC_PROCESS

signature_genes

AASDHPPT, ALDH1L1, ALDH1L2, MTHFD1,
MTHFD1L, MTHFD2L

ABHD14B, BPNT1, ENPP1, PAPSS1, PAPSS2,
SULT1A1, SULT1A2, SULT1A3, SULT1A4, SULT1B1,
SULT1C3, SULT1C4, SULT1E1, SULT2A1, SULT2B1,
TPST1, TPST2

ACHE, BCHE, CHAT, COLQ, SLC44A4, SLC5A7

BOLA2, BOLA2B, FDX2, FXN, GLRX3, GLRXS,
HSCB, ISCU, LYRM4, NDUFAB1, NFS1

AADAT, ADHFE1, D2HGDH, DLST, GOT1, GOT?2,
GPT2, IDH1, IDH2, KYAT3, LZHGDH, MRPS36,
OGDH, OGDHL, PHYH, TAT

sig_genecount_all

17

11

16

sig_genes_inlists

11

13

sig_genes_notinlists

percent_sig.genes_withinlists

83%

47%

0%

100%

81%



Gene ontology (GO) odds ratio (OR) calculations

GO signatures with odds ratios (ORs) > 1 had greater odds of non-concordant levels of
expression between TempO-seq and RNA-seq for the genes within the signature.

a
OR — ﬁ Within GO Not within GO
C - . Totals
/ d signature signature
Non-concordant
Genes with25EPM | ° b 3,810 genes
Co‘r;,c;:;d: :tgi;‘es c d 6,677 genes
(a+c)+(b+d) =
(a+c) (b+d) 10,487 genes




Gene ontologies (GOs) relating to chromatin and ribosomes
were the least concordant (OR > 1)

Gene Ontology Term from MSigDB (molecular signatures database) Genes (n) Genes.ln % Genfes n OR 1/0OR FDR
analysis analysis p-value

GOBP PROTEIN LOCALIZATION TO CENP A CONTAINING CHROMATIN 18 17 94 28.15 - 5.6E-04
GOCC_CHROMOSOME_CENTROMERIC_CORE_DOMAIN 19 18 95 14.07 - 3.1E-03
GOMF STRUCTURAL CONSTITUENT OF CHROMATIN 97 67 69 10.13 - 2.2E-12
GOBP_NEGATIVE_REGULATION OF MEGAKARYOCYTE DIFFERENTIATION 20 17 85 8.20 3 4.7E-02
GOCC_CYTOSOLIC LARGE RIBOSOMAL SUBUNIT 60 55 92 6.34 - 4.7E-07
GOCC_CYTOSOLIC_SMALL_RIBOSOMAL SUBUNIT 41 36 88 4.00 - 3.1E-02
GOCC_NUCLEOSOME 134 97 72 3.78 - 4.8E-07
GOCC_CYTOSOLIC_RIBOSOME 118 107 91 3.50 - 4.8E-07
GOBP_NUCLEOSOME ORGANIZATION 138 105 76 3.40 - 1.2E-06
GOMF_STRUCTURAL CONSTITUENT_OF_RIBOSOME 169 153 91 3.00 - 1.4E-07
GOCC LARGE RIBOSOMAL SUBUNIT 117 111 95 2.80 - 1.2E-04
GOCC_RIBOSOMAL_SUBUNIT 188 177 94 2.66 - 4.5E-07
GOBP_RIBOSOMAL LARGE SUBUNIT BIOGENESIS 76 73 96 2.53 - 4.4E-02
GOCC_CATALYTIC STEP 2 SPLICEOSOME 91 88 97 2.43 - 2.0E-02
GOBP CYTOPLASMIC TRANSLATION 156 146 94 2.41 - 1.7E-04
GOCC_PRERIBOSOME 109 105 96 2.18 - 3.6E-02
GOCC_RIBOSOME 239 215 90 2.17 - 2.6E-05
GOBP_PROTEIN_DNA_COMPLEX_ ASSEMBLY 240 189 79 2.08 - 5.1E-04
GOMF STRUCTURAL MOLECULE ACTIVITY 809 446 55 1.87 - 4.5E-07
GOCC_RIBONUCLEOPROTEIN_ COMPLEX 1169 661 57 1.70 - 2.0E-07
GOBP_RIBOSOME BIOGENESIS 325 308 95 1.67 - 6.2E-03
GOBP_RIBONUCLEOPROTEIN_ COMPLEX_ BIOGENESIS 502 447 89 1.62 - 5.6E-04




Gene ontologies relating to the cell structure were the most

concordant (OR < 1)

Gene Ontology Term from MSigDB (molecular signatures database) Genes (n) i::ﬁ:‘s:: %:‘:T;si:n OR 1/0OR FDR

GOCC_GOLGI_APPARATUS 1634 1068 65 0.77 1.30 4.6E-02
GOBP_LYMPHOCYTE_ACTIVATION 796 405 51 0.65 1.53 4.4E-02
GOMF PROTEIN_KINASE_ACTIVITY 577 382 66 0.60 1.66 6.2E-03
GOBP_REGULATION OF ANATOMICAL STRUCTURE_MORPHOGENESIS 937 488 52 0.60 1.67 5.1E-04
GOCC_ BASEMENT MEMBRANE 90 49 54 0.15 6.46 4.4E-03

Vacuole

Cytoplasm

Golgi
Vesicle

Golgi
Apparatus

Nucleus

Nucleolus
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Microtubule
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Lysosome Membrane
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Non-concordant genes heavily featured histone and
ribosomal gene families

@stone genes: 73% of all of the genes in the histone family were non-concordant \

e Histone genes do not have poly-A tails
e RNA-seq preparation procedure included a poly-A tail pull-down step = had low TPM
e TempO-seq does not require poly-A tail pull-down = had high CPM

This means that TempO-seq may be preferable to RNA-seq library preparations employing poly-A enrichment when

(
K interpreting expression levels for histone genes. /
T

osomal genes: more than half of the genes for ribosomal proteins were non-concordant

e TempO-seq probes were frequently not as efficient at detecting mRNA for ribosomal proteins for unclear reasons
o One possible explanation is that the TempO-seq probe design for a subset of the ribosomal protein mRNA did

not reliably capture expression for those specific genes.

! RNA-seq may be the preferable option when studying ribosomal protein genes. /
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Method to calculate the log

Relative Log L
Expression (RLE)

Sample Reference RLE
=8 log ,CPM =5 log,CPM =(8-5)=3

(EPM + 1) for gene X within a single cell line

RLE for Gene X =log,(

)

Average (EPM + 1) for gene X across all 39 cell lines

=[log, (EPM + 1) for gene X within a single cell line ] - [ Average (log,(EPM + 1) for gene X across all 39 cell lines)]



Calculated Relative Log Expression (RLE) for each cell line compared
to the average across cell lines within each platform. This resolved the
platform divergence without removing any genes.
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Calculated Relative Log Expression (RLE) for each cell line compared
to the average across cell lines within each platform. This resolved the

platform divergence without removing any genes.
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Calculated Relative Log Expression (RLE) for each cell line compared
to the average across cell lines within each platform. This resolved the
platform divergence without removing any genes.
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Pearson correlations for TempO-seq vs RNA-seq show:
* The correlation structure is preserved between TempO-seq and RNA-seq, providing more
weight of evidence suggesting the technologies give the same/similar response

* RLE highlighted differences between cell lines, maintaining good correlations between matching
cell lines and bringing non-matching cell line correlations to nearly zero

Pearson Correlations Key Pearson Correlations

Key
i. J AN A) TempO-seq vs RNA-seq - T T B) TempO-seq vs RNA-seq
4 05 0 05 1 Log,(EPM+1) 19,290 Genes 4 05 0 05 1 RLE 19,290 Genes
log2(EPM+1) Correlations RLE Correlations
TempO-seq Cell Lines RNA-seq Cell Lines TempO-seq Cell Lines — RNA-seq Cell Lines
; £ L
% = — z e
g 8 |~ W e e &
o< 3 % g -.__.- g -
Initial Pearson correlations: After RLE normalization:
Matching cell types: 0.77 (95% CI: 0.76 — 0.78) Matching cell types: 0.71 (95% Cl: 0.67 — 0.74)

Non-matching cell lines: 0.64 (95% CI: 0.64 — 0.65) Non-matching cell lines: -0.02 (95% CI: -0.03 —-0.01)
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' Summary of Baseline Gene Expression Comparison Findings | =

f TempO-seq vs TempO-seq:

. TempO-seq was highly reproducible at different read depths (Pearson
Correlations, PCA)

TempO-seq vs RNA-seq:

' . 80% of genes for TempO-seq vs RNA-seq log2EPM data are comparable
(PERMANOVA)

. The 20% of genes that were non-concordant related primarily to histone and
ribosomal gene families (Gene Ontology)

. TempO-seq vs RNA-seq has a PC1 platform divergence that was able to be
resolved using Relative Log Expression (RLE) normalization (PCA)

RLE accentuates inter- and intra-platform differences in cell line gene
expression patterns (Pearson correlations)




Study strengths and weaknesses

e This comparison includes 39 cell lines for the full
transcriptome and showed consistently high
correlations across all cell lines for TempO-seq vs
RNA-seq

e This is the first study to compare cell lysates to
purified RNA samples

¢ The 39 cell lines were from 11 different types of
tissue: lung, lymphatic (lymphoma), liver, kidney,
breast, bone, eye, blood (leukemia), endothelium
(microvascular), skin, adipose, and brain
e This represents a significant expansion upon

previous studies, covering 4 tissue types: blood,
breast, liver, and prostate cancer

Weaknesses/Complications

¢ Part of the differences could be due to the data
being from different cell stocks and from being
generated by different groups

e However, the variation is within normally
observed levels for transcriptomics data from
different laboratories and provides proof of
real-world replicability across labs

e Approximately 8,800 genes were not expressed at
baseline in any cell type in either platform, making
it important for this analysis to be repeated with a
chemical exposure dataset to try to induce the
expression of those genes for comparison



Conclusions and Future Work

-

TempO-seq is highly
reproducible at different
read depths, and shows
consistent gene
expression findings as

RMNArse€alization, the data
grouped by cell type and not by

!chnology platform in PCA

This work can help increase
confidence in using
TempO-seq data and/or for
using RLE normalization to
combine with RNA-seq data
This helps to validate TempO-seq

against the RNA-seq gold-standard
technique

~

Future work: TempO-seq from
lysed cells and RNA-seq data
need to be compared from the
same cell stocks and after
inducing more gene expression

\

—

This work using baseline expression

data is a good foundation for such
work /
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TempO-seq and RNA-seq Gene Expression Levels are Highly Correlated for Most Genes:
A Comparison Using 39 Human Cell Lines

Laura Word*, Clinton Willis, Richard Judson, Logan Everett, Sarah Davidson-Fritz, Derik Haggard, Bryant Chambers, Jesse Rogers, Joseph Bundy, Imran Shah, Nisha Sipes, Joshua Harrill
United States Environmental Protection Agency, Office Of Research And Development, Center For Computational Toxicology And Exposure, Research Triangle Park, NC 27709

Background

As transcriptomics data from new targeted sequencing platforms accumulates in the literature, it is important to evaluate their similarity to traditional whole transcriptome RNA-seq. conclusions: We fou nd that
The present study evaluated the comparability of one such targeted RNA-seq platform, TempO-seq, to traditional RNA-Seq using baseline gene expression profiles from human cell
lines. In this study, TempO-Seq data was generated from cell lysates with no RNA purification while RNA-Seq data that was from purified RNA was downloaded from the Human

Protein Atlas project. The current analysis used baseline expression and future work should repeat this comparison with chemical exposure data. norma’lzed bGSEI,ne gene
Methods and Results

expression TempO-seq data

PART 1: TempO-seq data with different read depths on samples prepared months apart from the same cryostocks are highly reproducible

First, two TempO-seq data sets from the same set of six human cell lines that were generated several months apart and at different read depths were compared using principal from Iysed Cel’s is reproducible

component analysis (PCA). Phase 1 and Phase 2 data were sequenced to depths of 6 and 4.5 million reads, respectively. Average Pearson correlation was 0.93 (95% Cl: 0.90 - 0.96).

F1) PCA: TempO-seq Phase 1vs Phase 2. These two TempO-seq F2) Genes driving the main variance grouped by cell line, not by data set. and com parab[e to RNA- seq
data sets were highly reproducible and suitable to combine.

o r——

o 7 : : from purified samples for most

genes, even when data were

Genes Driving PC1

generated by different laboratories

using different cell stocks

Expression Level of Genes Driving PC1

PART 2: TempO-seq and RNA-seq data is highly correlated: a platform divergence was observed, but it was readily resolved by calculating Relative Log Expression (RLE)

The log, expression per million (EPM) data for 19,290 overlapping genes were well correlated between the two platforms across the 39 cell lines (0.77, 95% Cl: 0.76 — 0.78). Non-concordance was determined by removing genes with the greatest log,
differences in expression between TempO-seq and RNA-seq until the percent variance explained by platform effects was resolved to less than 10% (PERMANOVA platform R? < 0.10). This determined that the majority of genes (15,480 genes, 80%) had
concordant baseline gene expression levels. Additionally, relative log expression (RLE) normalization calculated for each platform resolved the observed platform divergence. RLE calculation:

. (£PM+ 1) for gene X within a single cell line
RLE for Gene X =log,{ Average (EPM + 1) for gene X across all 39 cell lines'
F3) TempO-seq and RNA-seq relative log, difference was centered
around zero for the 19,290 overlapping genes. Non-concordant
genes (shaded in red) had a log,(EPM + 1) difference of less than
-2.09 (13" percentile) or greater than 1.47 (87* percentile).

F5) Odds ratios {ORs) evaluated which gene ontologies (GO) contained a higher proportion of
non-concordant genes. The ontologies with more non-concordant genes (OR > 1, orange color)
contained many ribosomal and histone family genes, and ontologies enriched for concordant
genes (OR < 1, green color) pertained to cell structure and kinase, immune, and golgi functions.

F6) PCA and Pearson correlations before vs after relative log expression (RLE) normalization, which resolved the platform
divergence to <10%. It also improved cell line clustering, likely driven by each cell lines’ unique gene expression patterns.
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