
TempO-seq and RNA-seq Gene Expression Levels are Highly 
Correlated for Most Genes: A Comparison Using 39 Human Cell Lines

Dr. Laura Word
ASCCT Webinar

The views are the author’s and do not necessarily represent the views of the U.S.EPA. The author declares no conflicts of interest.



Why care about transcriptomics data?

•The EPA high-throughput transcriptomics (HTTr) team is 
working on identifying patterns of effect when chemicals 
impact the same gene target

•This research can help us to predict the bioactivity of 
chemicals (without animal exposures)



• Quantifying levels of mRNA in cells is 
helpful for understanding changes in gene 
expression (such as in response to 
chemical exposure)

• There are different technologies for mRNA 
sequencing, including:

• RNA-seq using Illumina
• TempO-seq from BioSpyder

• Can sequence mRNA across the human 
genome (approximately 20,000 genes)

Messenger RNA 
Sequencing for 
Transcriptomics



RNA-seq Method
(more established)

Key features:
• Gold-standard, established method

• Non-targeted sequencing of RNA, so all RNA 
is quantified and species type does not have 
to be known

• Requires purification of RNA before 
quantification

• Fragments of RNA are sequenced and later 
aligned for data analysis, requiring significant 
computing resources



TempO-seq Method
(newer technology)

Key features:
• Easier sample prep because lysed cells can be 

used

• Less sample material is needed (picograms 
instead of nanograms)

• Possible to customize which transcripts are 
quantified

• Can be less expensive per sample at high scale

• Must have detector oligo (DO) probes for the 
species, only quantifies RNA for which there is a 
tag to measure it



Previous Research: prior case studies show TempO-seq is as consistent 
and sensitive at detecting changes in gene expression as RNA-seq

Fresh cell and tissue samples:
• Yeakley 2017: found that TempO-Seq had high correlation with fold differences measured by RNA-seq (R2 = 0.9) for more than 20,000 targets 

following exposure of MCF-7 cells to the histone deacetylase inhibitor Trichostatin A (TSA).
• Bushel 2018: compared data from the TempO-seq S1500+ surrogate transcriptome (2,284 genes) to whole transcriptome RNA-seq. Purified 

RNA from liver samples of rats showed some technological platform differences but the statistical analysis grouped by the 5 different 
mechanisms of action (MOAs) for the 15 chemicals.

• TempO-seq data had a higher (better) signal to noise ratio, less unexplained variance, and more reproducibility between biological 
replicates compared to RNA-seq, which they found to be partly due to TempO-seq having less variation in detection of lowly expressed 
genes.

Frozen and formalin-fixed paraffin-embedded (FFPE) samples: 
• Turnbull 2020: recommended TempO-seq as the preferable choice when analyzing human breast cancer samples with very limited quantity.
• Cannizzo 2022: determined that TempO-seq provided more consistent fold-change results for differentially expressed genes (DEGs) within 

frozen and FFPE mouse liver samples.



Previous Research: prior case studies show TempO-seq is as consistent 
and sensitive at detecting changes in gene expression as RNA-seq

Fresh cell and tissue samples:
• Yeakley 2017: found that TempO-Seq had high correlation with fold differences measured by RNA-seq (R2 = 0.9) for more than 20,000 targets 

following exposure of MCF-7 cells to the histone deacetylase inhibitor Trichostatin A (TSA).
• Bushel 2018: compared data from the TempO-seq S1500+ surrogate transcriptome (2,284 genes) to whole transcriptome RNA-seq. Purified 

RNA from liver samples of rats showed some technological platform differences but the statistical analysis grouped by the 5 different 
mechanisms of action (MOAs) for the 15 chemicals.

• TempO-seq data had a higher (better) signal to noise ratio, less unexplained variance, and more reproducibility between biological 
replicates compared to RNA-seq, which they found to be partly due to TempO-seq having less variation in detection of lowly expressed 
genes.

Frozen and formalin-fixed paraffin-embedded (FFPE) samples: 
• Turnbull 2020: recommended TempO-seq as the preferable choice when analyzing human breast cancer samples with very limited quantity.
• Cannizzo 2022: determined that TempO-seq provided more consistent fold-change results for differentially expressed genes (DEGs) within 

frozen and FFPE mouse liver samples.

A need remained for comparing lysed cells for the full transcriptome 
baseline gene expression in human samples across more cell types



TempO-seq: EPA Phase 1 and Phase 2 Data

• Baseline gene expression

• Both of these TempO-seq data sets were 
generated at the EPA in 2018-2019

• Phase 1 = 6 million read depth
• Phase 2 = 4.5 million read depth

• Clinton Willis performed sample 
collection for both data sets

• Cells came from independent cultures 
but were from the same cryostocks



• Publicly available RNA and protein baseline 
expression data for many tissues of the 
human body

• RNA-seq data at approximately 20 million 
reads depth

• More details: HPA is a Swedish-based program 
started in 2003 with the aim to map all the human 
proteins in cells, tissues and organs using 
integration of various omics technologies, including 
antibody-based imaging, mass spectrometry-based 
proteomics, transcriptomics and systems biology

RNA-seq data: Human Protein Atlas 



Step 1. Compare the 
TempO-seq Phase 1 and 

Phase 2 Data Sets



Cell Line
ExPASy 

CelloSaurus 
Accession

Tissue Origin Disease
Growth 
Mode

Morphology Source

MCF-7 CVCL_0031 Breast Adenocarcinoma adherent epithelial
ATCC       

(HTB-22TM)

U-2 OS CVCL_0042 Bone Osteosarcoma adherent epithelial
ATCC       

(HTB-96TM)

HepG2 CVCL_0027 Liver Hepatoblastoma adherent epithelial
ATCC         

(HB-8065TM)

Daudi CVCL_0008
Peripheral Blood 
(B lymphoblast)

Burkitt’s 
Lymphoma

suspension lymphoblast
ATCC         

(CCL-213TM)

CCD-18Co CVCL_2379 Colon none adherent fibroblast
ATCC          

(CRL-1459TM)

NCI-H1092 CVCL_1454 Lung
Small cell lung 
cancer (stage E 

carcinoma)
suspension n/a

ATCC          
(CRL-5855TM)

Common Cell Types: TempO-seq Phase 1 and Phase 2



Pearson correlations for TempO-seq Phase 1 and Phase 2 show strong reproducibility
The average across technical replicates was 0.98 (95% CI: 0.97–0.99) when averaged across both Phase 1 and Phase 2. 
When comparing the technical replicate data across the two TempO-seq phases, the average was 0.93 (95% CI: 0.90–0.96).



Principal 
Component 

Analysis 
(PCA)

PCA is an unsupervised 
dimensionality reduction 
method for visualizing 
patterns in data



Principal Component Analysis (PCA)
PCA shows that the replicate data from the two TempO-seq data sets group well by cell line



Principal Component Analysis (PCA)
PCA shows that the replicate data from the two TempO-seq data sets group well by cell type

Grouped by cell 
line, not data set



Principal Component Analysis (PCA)
PCA shows that the replicate data from the two TempO-seq data sets group well by cell type

Enabled us to combine these two TempO-seq 
data sets for comparison to RNA-seq

Grouped by cell 
line, not data set



Step 2. Compare the 
Combined TempO-seq Data 

to RNA-seq



39 Cell lines were 
compared for 
TempO-seq vs RNA-seq

11 Tissue types:
Lung, blood, liver, kidney, breast, 
bone, eye, vascular endothelium, 
skin, brain, adipose

• This represents a significant 
expansion upon previous studies, 
covering 4 tissue types: blood, 
breast, liver, and prostate cancer

Data 
Comparison

TempO-seq 
Phase

Cell Line Tissue Origin Disease or Cell Line Growth Mode

TvR 1 A549 Lung Carcinoma Adherent
TvR 1 A704 Kidney Renal Cell Carcinoma Adherent
TvR 1 ASC52Telo Adipose Tissue Mesenchymal Stem Cell Adherent
TvR 1 BHY Upper Aerodigestive Tract Oral Squamous Cell carcinoma Adherent
TvR 2 BT-483 Breast Ductal Carcinoma Adherent
TvR 2 CAL-148 Breast Ductal Adenocarcinoma Mixed
TvR 2 CAL-78 Muscle Chondrosarcoma Adherent
TvT, TVR 1, 2 CCD-18Co Colon None (Fibroblast) Adherent
TvT, TvR 1, 2 Daudi Lymphoid Burkitt’s Lymphoma Suspension
TvR 1 DMS 454 Lung Small Cell Lung Carcinoma Adherent
TvR 2 DoHH2 Lymphoid B Cell Lymphoma Suspension
TvR 1 DV-90 Lung Adenocarcinoma Adherent
TvR 2 EFM-19 Breast Ductal Carcinoma Adherent
TvR 1 HBEC3-KT Lung Bronchial Epithelia Adherent
TvT, TvR 1, 2 HepG2 Liver Hepatoblastoma Adherent
TvR 2 HOS Bone Osteosarcoma Adherent
TvR 2 Hs.839.T Skin Melanoma Adherent
TvR 1 hTERT-HME1 Breast Breast Epithelium Adherent
TvR 1 hTERT-RPE1 Eye Pigmented Epithelium Adherent
TvR 2 Huh-1 Liver Hepatoma Adherent
TvR 2 Huh-7 Liver Hepatoblastoma Adherent
TvR 1 HUVEC/TERT2 Umbilical Cord Vascular Endothelium Adherent
TvR 1 KP-N-RT-BM-1 Central Nervous System Neuroblastoma Adherent
TvT, TvR 1, 2 MCF7 Breast Adenocarcinoma Adherent
TvR 2 MG-63 Bone Osteosarcoma Adherent
TvR 2 MHH-CALL-4 Lymphoid B Cell Lymphoma Suspension
TvT, TvR 1, 2 NCI-H1092 Lung Small cell lung cancer (stage E carcinoma) Suspension
TvR 2 NCI-H1105 Lung Small Cell Lung Cancer Suspension
TvR 2 NCI-H1436 Lung Small Cell Lung Cancer Suspension
TvR 2 NCI-H2106 Lung Non-small Cell Lung Cancer Suspension
TvR 2 NCI-H2171 Lung Small Cell Lung Cancer Suspension
TvR 2 PLC/PRF/5 Liver Hepatoma Adherent
TvR 1 RPTEC/TERT1 Kidney Proximal Tubule Epithelium Adherent
TvR 2 SaOS-2 Bone Osteosarcoma Adherent
TvR 1 SET-2 Lymphoid Acute Megakaryoblastic Leukemia Suspension
TvR 1 SK-MEL-28 Skin Melanoma Adherent
TvR 2 SU-DHL-6 Lymphoid Large / B Cell Lymphoma Suspension
TvR 2 T-47D Breast Ductal Carcinoma Adherent
TvR 1 TIME Skin Dermal Microvascular Endothelium Adherent
TvT, TvR 1, 2 U-2 OS Bone Osteosarcoma Adherent



Histograms for TempO-seq data (left) 
vs RNA-seq data (right)

Showing two cell types of interest

RNA-seq data; log2(TPM+1); 
“.y”

TempO-seq data; log2(CPM+1); “.x”

Understanding the 
data distributions



TempO-seq 
minus 
RNA-seq 
log2 data is 
centered 
around zero 
across all 39 
cell types

Data shown for 19,290 overlapping genes

Note: Counts Per Million (CPM) and Transcripts Per Million (TPM) were deemed 
comparable and will be referred to collectively as Expression Per Million (EPM)



PCA for 
TempO-seq 
vs RNA-seq 
shows a 
clear 
platform 
divergence

PERMANOVA results across all PCs for TempO-seq vs RNA-seq 
log2(EPM+1) showed that, in total, the platform effect accounted 
for 31% of the total variance (R2 = 0.31, p = 0.001).



Which genes are 
non-concordant and are 

driving the platform 
divergence?



Which genes are 
non-concordant and are 

driving the platform 
divergence?

Genes with the 
greatest difference 
in log2 expression 
levels between 
TempO-seq and 
RNA-seq were 
progressively 
removed until the 
PERMANOVA 
variance explained 
(R2) for platform 
effect across all 
PCs was < 10% 



Non-concordant genes shown in red (3,810 genes of 19,290 genes)

87th percentile (1.47)

13th percentile (-2.09)

Genes that were expressed (≥5EPM) with log
2
(EPM+1) diff > 1.47 and < -2.09 

were non-concordant between TempO-seq and RNA-seq

After removal of the 3,810 
most non-concordant genes, 
PERMANOVA on the PCs for 
the remaining 15,480 
concordant genes had < 10% 
variance explained by 
platform divergence 
(R2 = 0.099, p = 0.001)



The 3,810 Non-concordant genes had clear differences 
in expression level that were consistent across cell types

*Scientific 
analyses 
involving 
these genes 
should be 
interpreted 
with caution



Gene Ontology (GO) Analysis:
Evaluating patterns among non-concordant genes
using MSigDB signatures

• Assessed expression genes: Required a minimum expression of ≥5 CPM in 
TempO-seq or ≥5 TPM in RNA-seq (10,487 genes). Of those, there were 3,810 
genes that were non-concordant and 6,677 genes were concordant.

• GO signature requirements: We required at least 10 genes from the GO 
signature to be within the list of 10,487 expressed genes. We also required at 
least 50% of the genes within the GO signature to be in the list of 10,487 
expressed genes that were retained for analysis. 

• This resulted in 3,935 GO signatures being retained in our analysis out of 
the full list of 10,461 GOs from Molecular Signatures Database Human 
Collections (MSigDB).

• Odds ratios: Odds of a GO signature being enriched with more non-concordant 
genes were calculated.



Example of GO filtering step

signature (sig) signature_genes sig_genecount_all sig_genes_inlists sig_genes_notinlists percent_sig.genes_withinlists

GOBP_10_FORMYLTETRAHYDROFOL

ATE_METABOLIC_PROCESS

AASDHPPT, ALDH1L1, ALDH1L2, MTHFD1, 

MTHFD1L, MTHFD2L 6 5 1 83%

GOBP_3_PHOSPHOADENOSINE_5_P

HOSPHOSULFATE_METABOLIC_PROC

ESS

ABHD14B, BPNT1, ENPP1, PAPSS1, PAPSS2, 

SULT1A1, SULT1A2, SULT1A3, SULT1A4, SULT1B1, 

SULT1C3, SULT1C4, SULT1E1, SULT2A1, SULT2B1, 

TPST1, TPST2 17 8 9 47%

GOBP_ACETATE_ESTER_METABOLIC

_PROCESS ACHE, BCHE, CHAT, COLQ, SLC44A4, SLC5A7 6 0 6 0%

GOBP_2FE_2S_CLUSTER_ASSEMBLY

BOLA2, BOLA2B, FDX2, FXN, GLRX3, GLRX5, 

HSCB, ISCU, LYRM4, NDUFAB1, NFS1 11 11 0 100%

GOBP_2_OXOGLUTARATE_METABOL

IC_PROCESS

AADAT, ADHFE1, D2HGDH, DLST, GOT1, GOT2, 

GPT2, IDH1, IDH2, KYAT3, L2HGDH, MRPS36, 

OGDH, OGDHL, PHYH, TAT 16 13 3 81%



Gene ontology (GO) odds ratio (OR) calculations

 
Within GO 
signature

Not within GO 
signature

Totals

Non-concordant 
Genes with ≥ 5 EPM

a b 3,810 genes

Concordant Genes 
with ≥ 5 EPM

c d 6,677 genes

 (a+c) (b+d)
(a+c)+(b+d) = 
10,487 genes

 

GO signatures with odds ratios (ORs) > 1 had greater odds of non-concordant levels of 
expression between TempO-seq and RNA-seq for the genes within the signature.



Gene ontologies (GOs) relating to chromatin and ribosomes 
were the least concordant (OR > 1)

Gene Ontology Term from MSigDB (molecular signatures database) Genes (n)
Genes in 
analysis

% Genes in 
analysis

OR 1/OR
FDR 
p-value

GOBP_PROTEIN_LOCALIZATION_TO_CENP_A_CONTAINING_CHROMATIN 18 17 94 28.15 - 5.6E-04
GOCC_CHROMOSOME_CENTROMERIC_CORE_DOMAIN 19 18 95 14.07 - 3.1E-03
GOMF_STRUCTURAL_CONSTITUENT_OF_CHROMATIN 97 67 69 10.13 - 2.2E-12

GOBP_NEGATIVE_REGULATION_OF_MEGAKARYOCYTE_DIFFERENTIATION 20 17 85 8.20 - 4.7E-02
GOCC_CYTOSOLIC_LARGE_RIBOSOMAL_SUBUNIT 60 55 92 6.34 - 4.7E-07
GOCC_CYTOSOLIC_SMALL_RIBOSOMAL_SUBUNIT 41 36 88 4.00 - 3.1E-02
GOCC_NUCLEOSOME 134 97 72 3.78 - 4.8E-07
GOCC_CYTOSOLIC_RIBOSOME 118 107 91 3.50 - 4.8E-07
GOBP_NUCLEOSOME_ORGANIZATION 138 105 76 3.40 - 1.2E-06
GOMF_STRUCTURAL_CONSTITUENT_OF_RIBOSOME 169 153 91 3.00 - 1.4E-07
GOCC_LARGE_RIBOSOMAL_SUBUNIT 117 111 95 2.80 - 1.2E-04
GOCC_RIBOSOMAL_SUBUNIT 188 177 94 2.66 - 4.5E-07
GOBP_RIBOSOMAL_LARGE_SUBUNIT_BIOGENESIS 76 73 96 2.53 - 4.4E-02
GOCC_CATALYTIC_STEP_2_SPLICEOSOME 91 88 97 2.43 - 2.0E-02
GOBP_CYTOPLASMIC_TRANSLATION 156 146 94 2.41 - 1.7E-04
GOCC_PRERIBOSOME 109 105 96 2.18 - 3.6E-02
GOCC_RIBOSOME 239 215 90 2.17 - 2.6E-05
GOBP_PROTEIN_DNA_COMPLEX_ASSEMBLY 240 189 79 2.08 - 5.1E-04
GOMF_STRUCTURAL_MOLECULE_ACTIVITY 809 446 55 1.87 - 4.5E-07
GOCC_RIBONUCLEOPROTEIN_COMPLEX 1169 661 57 1.70 - 2.0E-07
GOBP_RIBOSOME_BIOGENESIS 325 308 95 1.67 - 6.2E-03
GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS 502 447 89 1.62 - 5.6E-04



Gene ontologies relating to the cell structure were the most 
concordant (OR < 1)

Gene Ontology Term from MSigDB (molecular signatures database) Genes (n)
Genes in 
analysis

% Genes in 
analysis

OR 1/OR FDR

GOCC_GOLGI_APPARATUS 1634 1068 65 0.77 1.30 4.6E-02

GOBP_LYMPHOCYTE_ACTIVATION 796 405 51 0.65 1.53 4.4E-02

GOMF_PROTEIN_KINASE_ACTIVITY 577 382 66 0.60 1.66 6.2E-03

GOBP_REGULATION_OF_ANATOMICAL_STRUCTURE_MORPHOGENESIS 937 488 52 0.60 1.67 5.1E-04

GOCC_BASEMENT_MEMBRANE 90 49 54 0.15 6.46 4.4E-03



Non-concordant genes heavily featured histone and 
ribosomal gene families

Histone genes: 73% of all of the genes in the histone family were non-concordant

● Histone genes do not have poly-A tails 
● RNA-seq preparation procedure included a poly-A tail pull-down step = had low TPM
● TempO-seq does not require poly-A tail pull-down = had high CPM
● This means that TempO-seq may be preferable to RNA-seq library preparations employing poly-A enrichment when 

interpreting expression levels for histone genes.

Ribosomal genes: more than half of the genes for ribosomal proteins were non-concordant

● TempO-seq probes were frequently not as efficient at detecting mRNA for ribosomal proteins for unclear reasons
○ One possible explanation is that the TempO-seq probe design for a subset of the ribosomal protein mRNA did 

not reliably capture expression for those specific genes.
● RNA-seq may be the preferable option when studying ribosomal protein genes. 



Is there a 
good way to 
resolve the 
platform 
divergence?



Relative Log 
Expression (RLE)

Example:

Sample 

= 8 log
2
CPM

Reference 

= 5 log
2
CPM

RLE 

= (8 - 5) = 3

Method to calculate the log 
expression level relative to a 

reference value

 



Calculated Relative Log Expression (RLE) for each cell line compared 
to the average across cell lines within each platform. This resolved the 
platform divergence without removing any genes.

RLE



Calculated Relative Log Expression (RLE) for each cell line compared 
to the average across cell lines within each platform. This resolved the 
platform divergence without removing any genes.

RLE

Grouped by platform Grouped by cell line



Calculated Relative Log Expression (RLE) for each cell line compared 
to the average across cell lines within each platform. This resolved the 
platform divergence without removing any genes.

RLE

The cell lines in this 
off-shoot with PC2 > 50 are 
all cancer cell lines derived 
from the immune system: 
SET-2, MHH-CALL-4, 
DoHH2, SU-DHL-6, and 
Daudi.

Grouped by platform Grouped by cell line



Pearson correlations for TempO-seq vs RNA-seq show:
• The correlation structure is preserved between TempO-seq and RNA-seq, providing more 

weight of evidence suggesting the technologies give the same/similar response 

• RLE highlighted differences between cell lines, maintaining good correlations between matching 
cell lines and bringing non-matching cell line correlations to nearly zero

Initial Pearson correlations:
Matching cell types: 0.77 (95% CI: 0.76 – 0.78)
Non-matching cell lines: 0.64 (95% CI: 0.64 – 0.65)

After RLE normalization:
Matching cell types: 0.71 (95% CI: 0.67 – 0.74) 
Non-matching cell lines: -0.02 (95% CI: -0.03 – -0.01)



Summary of Baseline Gene Expression Comparison Findings

TempO-seq vs TempO-seq:
• TempO-seq was highly reproducible at different read depths (Pearson 

Correlations, PCA)

TempO-seq vs RNA-seq:
• 80% of genes for TempO-seq vs RNA-seq log2EPM data are comparable 

(PERMANOVA)
• The 20% of genes that were non-concordant related primarily to histone and 

ribosomal gene families (Gene Ontology)
• TempO-seq vs RNA-seq has a PC1 platform divergence that was able to be 

resolved using Relative Log Expression (RLE) normalization (PCA)
• RLE accentuates inter- and intra-platform differences in cell line gene 

expression patterns (Pearson correlations)



Strengths

• This comparison includes 39 cell lines for the full 
transcriptome and showed consistently high 
correlations across all cell lines for TempO-seq vs 
RNA-seq

• This is the first study to compare cell lysates to 
purified RNA samples

• The 39 cell lines were from 11 different types of 
tissue: lung, lymphatic (lymphoma), liver, kidney, 
breast, bone, eye, blood (leukemia), endothelium 
(microvascular), skin, adipose, and brain
• This represents a significant expansion upon 

previous studies, covering 4 tissue types: blood, 
breast, liver, and prostate cancer

Weaknesses/Complications

• Part of the differences could be due to the data 
being from different cell stocks and from being 
generated by different groups
• However, the variation is within normally 

observed levels for transcriptomics data from 
different laboratories and provides proof of 
real-world replicability across labs

• Approximately 8,800 genes were not expressed at 
baseline in any cell type in either platform, making 
it important for this analysis to be repeated with a 
chemical exposure dataset to try to induce the 
expression of those genes for comparison

Study strengths and weaknesses



TempO-seq is highly 
reproducible at different 
read depths, and shows 
consistent gene 
expression findings as 
RNA-seqAfter normalization, the data 
grouped by cell type and not by 
technology platform in PCA

This work can help increase 
confidence in using 
TempO-seq data and/or for 
using RLE normalization to 
combine with RNA-seq data

This helps to validate TempO-seq 
against the RNA-seq gold-standard 
technique

Future work: TempO-seq from 
lysed cells and RNA-seq data 
need to be compared from the 
same cell stocks and after 
inducing more gene expression 

This work using baseline expression 
data is a good foundation for such 
work

Conclusions and Future Work
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