LivHeart: A Multi Organ-on-Chip Platform to Study Off-Target Cardiotoxicity of Drugs Upon Liver Metabolism

March, 24th 2023

Erika Ferrari

erika1.ferrari@polimi.it
erika.ferrari@biomimx.com
Organs-on-chip

“Microfluidic devices able to mimic activities, mechanics, interactions and physiological responses of human organs *in vitro* “

www.pharmaceutical-journal.com
Organs-on-chip

APPLICATION in the Drug Development Pipeline

• Efficacy
• Safety
• Complement/Replace animal models
Drug Development Process - preclinical

Reproduce organ complexity ✓
Differences between animals and humans ×
High animal-to-animal variability ×
Ethical problem ×
Drug Development Process - preclinical

Characters:
- Animals
- 2D: '80s
- 3D: '90s
- OoC: ‘10s
- MOoC: present

Characteristics:
- Cheap ✓
- Human models ✓
- Static conditions ✗
- No organ complexity ✗
Drug Development Process - *preclinical*

- **Animals**
- **2D**
- **3D**
- **OoC**
- **MOoC**

Gold standard

- ‘80s
- ‘90s
- ‘10s
- Present

- Low costs and volume samples ✓
- 3D human models in controlled environment ✓
- Recapitulation of organ architecture ✓
- Stimuli to mimic organ complexity ✓
- NO organ-organ communication ✗
Drug Development Process - preclinical

- Low costs and volume samples
- 3D human models in controlled environment
- Recapitulation of organ architecture
- Stimuli to mimic organ complexity
- Organ-organ communication
- Earlier elimination of problematic drugs
Drug safety process

APPLICATION in the Drug Development Pipeline

- Efficacy
- Safety
- Complement/Replace animal models

“Almost 95% of lead candidates identified by current in vivo screens do not become successful drugs due to unforeseen toxicity”
Liver-Heart models - limitations

ECHO platform
- High priming volume
- Monocultures

HESPEROS platform
- 2D hepato-cardiac model \rightarrow low functionality
- No control of organ models communication

Our Liver and Heart models

2D hepatic model → HepG2 + 3T3 fibroblasts
- Optimized for microfluidic platforms
- Validated for metabolism

3D cardiac model → nRCM embedded in a fibrin gel
Mechanical stimulation & Electrical recording
- Enhanced cardiac viability
- Improved maturation and functionality
Our Liver and Heart models

2D hepatic model → HepG2 + 3T3 fibroblasts

- Optimized for microfluidic platforms
- Validated for metabolism

Beating heart on chip

3D cardiac model → nRCM embedded in a fibrin gel

Mechanical stimulation & Electrical recording

- Enhanced cardiac viability
- Improved maturation and functionality

Ferrari E et al. Biomed Mater. 2021 Jun 7;16(4)
μPCC on chip

STARTING POINT

Micropatterned co-cultures (MPCCs) of hepatocytes and 3T3 fibroblasts

→ highest production of albumin;

AIM: Build MPCCs inside microfluidic devices to generate a liver-on-chip model

PATTERNING

MICROFLUIDICS

Collagen coated glass slide ‘+’ alignment signs

PDMS channel layer

bonding

Cell seeding and medium perfusion

250µm

Ferrari E et al. Biomed Mater. 2021 Jun 7;16(4)
μPCC on chip

- HepG2 seeding and attachment
- 3T3 fibroblasts seeding to generate μPCCs
- Viability > 83% after 7 days of culture
- Good albumin production

Ferrari E et al. Biomed Mater. 2021 Jun 7;16(4)
µPCC on chip

- HepG2 seeding and attachment
- 3T3 fibroblasts seeding to generate µPCCs
- Viability > 83% after 7 days of culture
- Good albumin production
- Capable of Tegafur metabolism

Ferrari E et al. Biomed Mater. 2021 Jun 7;16(4)
Our Liver and Heart models

2D hepatic model → HepG2 + 3T3 fibroblasts

- Optimized for microfluidic platforms
- Validated for metabolism

μPCC on chip

Beating heart on chip

3D cardiac model → nRCM embedded in a fibrin gel

Mechanical stimulation & Electrical recording

- Enhanced cardiac viability
- Improved maturation and functionality

Ferrari E et al. Biomed Mater. 2021 Jun 7;16(4)

Beating heart on chip

uBeat® Technology (EP3289065B1)

Mechanical stimulation
(uniaxial stretching 10-15% strain)

• Functional 3D constructs

Synchronously beating construct

\[\text{cTnI, Phalloidin, DAPI} \]

\[\text{cTnI, DAPI} \]

10µm

Mann Whitney Test (non-normal distributions; *P < 0.05; **P < 0.01; ***P < 0.001)

Beating heart on chip

μECG Technology (EP3620508A1 – Granted UIBM, EPO)

Positioning of electrodes for:
- Electrical activity recording (field potential)
- Electrical stimulation (uniform electric field)

Visone R. et al. Biofabrication 2021
Liver-Heart on chip

AIM: Develop a **multiorgan-on-chip** platform capable to detect the cardiotoxicity of drugs upon liver metabolization

LivHeart platform

In collaboration with BiomimX

µECG (patented EP3620508A1)

Produced via PHOTO (@ PoliFAB) and SOFT (@ MiMic Lab) Lithographic techniques

LivHeart platform

Valve Layer

Reservoir valve system

Communication valve system

In collaboration with BiomimX

Produced via PHOTO (@ PoliFAB) and SOFT (@ MiMic Lab) Lithographic techniques

LivHeart platform

Produced via PHOTO (@ PoliFAB) and SOFT (@ MiMic Lab) Lithographic techniques

Valve operating pressure

- Colored PBS \rightarrow communication and reservoirs valves
- Application of decreasing pressure values

Communication Valves

Reservoirs Valves

LivHeart platform - technical results

Ferrari E, Visone R, et al. *Adv Mat Tech (under review)*
LivHeart platform - technical results

Actuation operating pressure - stretching

\[\varepsilon_{yy} = \frac{\Delta y(P500) - \Delta y(P0)}{\Delta y(P0)} = 0.11 \]

10-15\% physiological uniaxial strain

\[\varepsilon_{xx} = \frac{\Delta x(P500) - \Delta x(P0)}{\Delta x(P0)} = 0.03 \]

Marsano et al., 2016

P= 0 mmHg - P= 500 mmHg

Scale bars=100µm

Diffusion characterization - numerical

- Transport of Diluted Species
- Medium → Phosphate buffered saline (PBS)
- Drug → C0 = 10 μM & D = 6 × 10^{-6} cm^2/s
 - r Terfenadine → MW=472g/mol
 - η DMEM w/10% FBS: 9.4e10-4 Pa*s
- t = [0, 48] h & time step = 1 h
Rhodamine MW=479 g/mol
Terfenadine MW=472 g/mol
Fexofenadine MW=502 g/mol

LivHeart platform - technical results

Diffusion characterization - experimental

Controlled diffusion with NO convection (i.e., no beads movement)

Rhodamine diffusion

- Liver chamber
- Heart chamber

- Normalized Intensity (%)
- Time [h]

N=4

LivHeart platform - biological results

Model validation with Terfenadine

"Terfenadine (TER), a multichannel blocker (i.e., K+ and Ca2+ ion channels) is a drug able to cause a prolongation of the QT interval, which may lead to cardiotoxic effects."

LivHeart platform - biological results

<table>
<thead>
<tr>
<th>Seeding</th>
<th>Tissue maturation</th>
<th>Drug treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day -7</td>
<td>Day 0</td>
<td>Day 6</td>
</tr>
<tr>
<td>Coverslip functionalization</td>
<td>HepG2 seeding</td>
<td>Open valve Drug/DMSO diffusion</td>
</tr>
<tr>
<td>Day 1</td>
<td>Day 2</td>
<td>Day 7</td>
</tr>
<tr>
<td>NIH-3T3 seeding</td>
<td>NRCM seeding</td>
<td>Analysis</td>
</tr>
<tr>
<td>Day 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug/DMSO administration</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mass Spectrometry

MRM chromatograms of TER→FEX condition (N=5)

- **Fexofenadine detected at 2 min**
- **Residual Terfenadine detected at 2.48 min**

Liver metabolized Terfenadine (TER→FEX) condition follows the trend of the control compared to when Terfenadine (TER) is directly administered on the heart.
The LivHeart allowed the testing of a non-cardiotoxic metabolite generated from a cardiotoxic drug.
Conclusions
Design and development of a reliable micropatterned Liver-Heart platform encompassing a continuously monitored mechanically active 3D cardiac model to undertake drug toxicity studies upon hepatic metabolism (demonstrated on the case study Terfenadine)

Limitations
• 2D cultures
• User-dependent
• PDMS
• Low-mid throughput

Future Developments
Adopt human-derived cardiomyocytes/hepatocytes as more relevant cell type in the 3D cardiac/liver models
MiMic Lab
Prof. Marco Rasponi
Dr. Paola Occhetta
Cecilia Palma
Tatiana Mencarini
Dr. Mattia Ballerini
Karol Konrad Kugiejko
Alessandro Cordiale
Elisa Monti
Rodrigo Torres Garcia
Giacomo Cretti

BiomimX
Prof. Marco Rasponi
Dr. Paola Occhetta
Prof. Alberto Redaelli
Dr. Roberta Visone
Ferran Juan Lozano
Stefano Piazza
Caterina Pernici

IRCCS Galeazzi
Prof. Matteo Moretti
Dr. Enrica Torretta

Accele ra
Dr. Simona Marzorati
Dr. Enrico Pesenti

Thank You!
Questions?