

# Integrating High Throughput Transcriptomics into a Tiered Framework to Prioritize Chemicals for Toxicity Testing

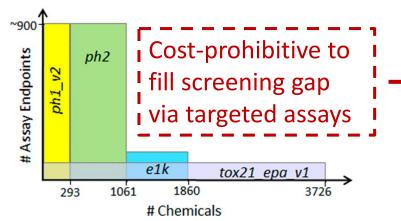
Jesse Rogers, PhD ORISE Postdoctoral Fellow, Biomolecular and Computational Toxicology Division <u>rogers.jesse@epa.gov</u>



February 22, 2023 ASCCT-ESTIV Webinar



#### Disclaimer


# The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of US EPA.

# Addressing Gaps in Chemical Toxicity Testing

#### Toxicity Testing in the 21<sup>st</sup> Century (NRC 2007)

 Shift from traditional animal-based toxicity testing to New Approach Methodologies (NAMs) and predictive toxicology

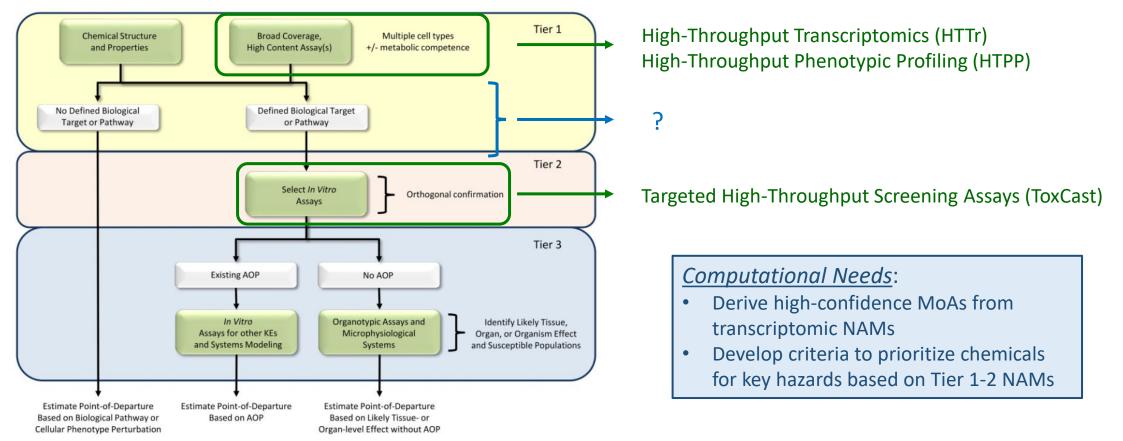
| Testing Phase    | Chemical Set | Unique<br>Chemicals | Assay<br>Endpoints |  |
|------------------|--------------|---------------------|--------------------|--|
| ToxCast Phase I  | ph1_v1       | 310                 | ~700               |  |
| ToxCast Phase II | ph1_v2       | 293                 | ~200               |  |
|                  | ph2          | 768                 | ~900               |  |
|                  | e1k          | 799                 | ~50                |  |
| Tox21            | tox21_epa_v1 | 3726                | ~80                |  |
|                  |              |                     |                    |  |



US EPA ToxCast program (Dix et al. Toxicol Sci 2007)

- Broad bioactivity profiling of chemicals via highthroughput screening (HTS) assays
- Limited biological target coverage, reduced xenobiotic metabolism *in vitro* (Rice et al. *Environ Health Perspect* 2013)

#### Next Generation Blueprint for Hazard


**Evaluation**: Integrate multiple assay technologies into a single framework for efficient hazard screening (Thomas et al. *Toxicol Sci* 2019)

ironmental Protection



#### Integrating Data Streams to Improve Scientific Confidence in NAMs

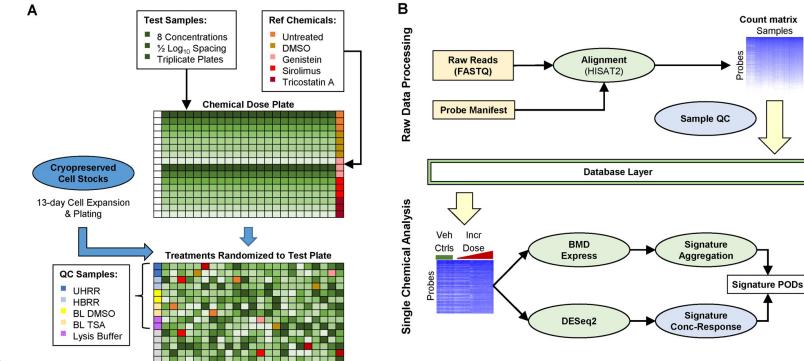
<u>Tiered hazard evaluation framework</u>: investigate potential mechanisms-of-action (MoAs) via high-throughput screening platforms and link verified chemicals to likely adverse outcomes (Thomas et al. *Toxicol Sci* 2019)







**Define Tiered Framework for Chemical Prioritization** 

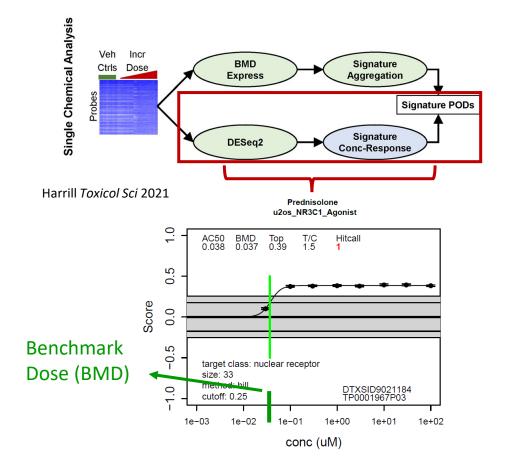

Project Outline Apply Framework to Retrospective Tier 1-2 Screening Data

Identify Candidates for Prospective Tier 2 Assessment

**Conclusions and Next Steps** 

## High-Throughput Transcriptomics for Chemical Screening

- TempO-Seq : Next-gen sequencing of >20,000 probes hybridized to expressed transcripts (Yeakley et al. PLos One 2017)
- Up to 1,387 chemicals screened in multi-concentration format for multiple cell lines:
  - MCF7 Breast Carcinoma Cells (Harrill et al. Toxicol Sci 2021)
  - U-2 OS Osteosarcoma Epithelial Cells (Bundy et al. In Prep)
  - HepaRG Hepatic Progenitor Cells (Shah et al. In Prep)




Environmental Protection

Agency

#### MoA Identification from Transcriptomic Data Streams

- Single-sample gene set enrichment analysis of compiled signatures (Barbie *et al. Nature* 2009)
- Concentration-response profiling of enrichment scores via *tcplfit2* (Sheffield *et. al. Bioinformatics* 2022)

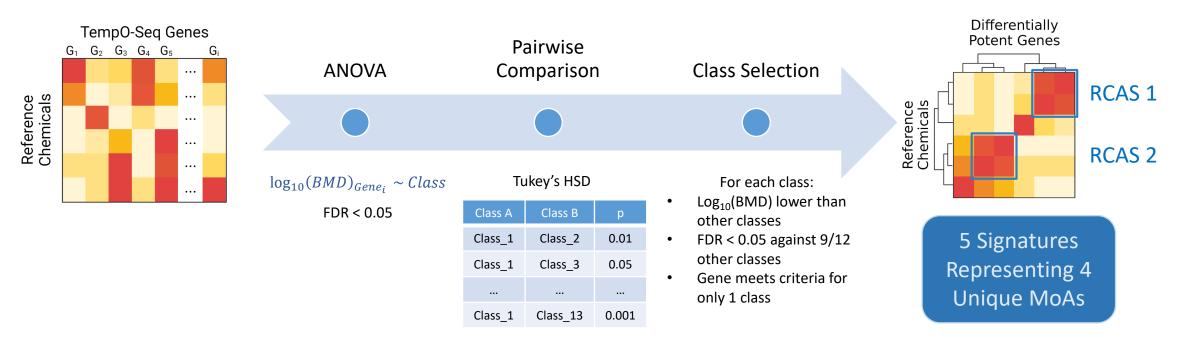


nvironmental Protection

Agency

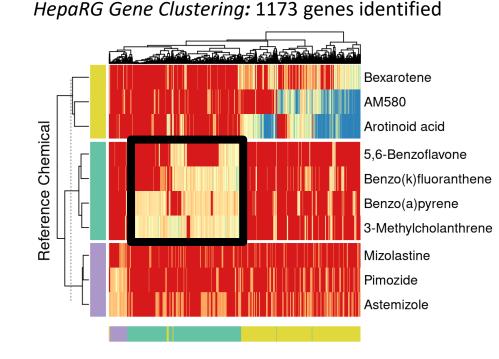
Catalog of >11,000 public gene set signatures with toxicological relevance, annotated for known molecular targets:

- **Bioplanet** (Huang, et al. Front Pharmacol 2019)
- **CMap** (Subramanian, *et al. Cell* 2017)
- > **DisGeNET** (Pinero, *et al. Database* 2015)
- > **MSigDB** (Liberzon, *et al. Cell Syst* 2015)
- Some public signatures may not be well-suited for probing MoAs in current assay
  - Cell lines used for derivation
  - Methods used for development, e.g. KEGG/Reactome
- Data-driven signatures may improve assay translation by profiling gene expression related to molecular initiating events

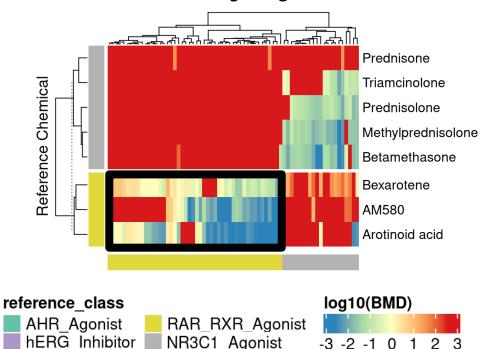





### Data-Driven Signature Development Identifies Uniquely-Potent Features


<u>Reference Class Associated Signatures (RCAS)</u>: gene sets uniquely potent for individual MoAs identified via univariate strategy

• Reference chemicals identified via *RefChemDB*: automated mining of literature databases for chemicalmolecular target interactions (Judson et. al. *ALTEX* 2019)



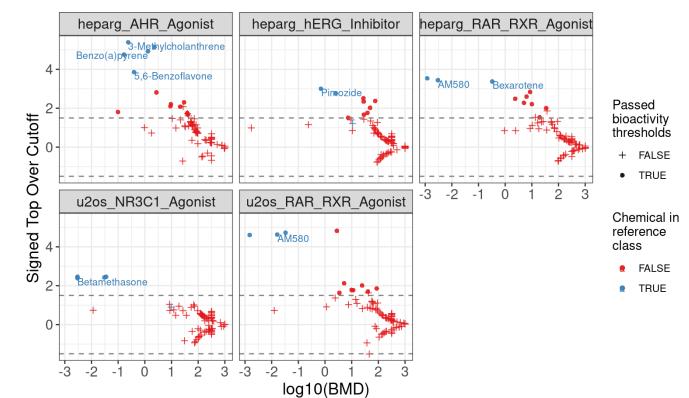

#### RCAS Gene Potencies Reveal Distinct Patterns by MoA

- Reference chemicals **annotated for same MoA** as signature demonstrate activity at low concentrations
- Reference chemicals annotated for other MoAs compared to signature show activity at high concentrations or no concentration-responsiveness



vironmental Protection




#### U-2 OS Gene Clustering: 69 genes identified



# Efficacy and Potency for RCAS are Greatest for Matching Reference Chemicals

- Concentration-response modeling of reference signatures via CompTox-httrpathway package (<u>https://github.com/USEPA/CompTox-httrpathway</u>)
  - Enrichment scores estimated via ssGSEA (Barbie *et. al. Nature* 2009)
  - BMDs estimated from normalized enrichment scores via tcplfit2 (Sheffield *et. al. Bioinformatics* 2022)
- Signature bioactivity determined via thresholding of confidence and efficacy metrics:
  - Curve-fit confidence: hitcall  $\ge 0.9$
  - Efficacy: top over  $cutoff \ge 1.5$

In-class chemicals: low BMD, high efficacy Out-of-class chemicals: high BMD, low efficacy

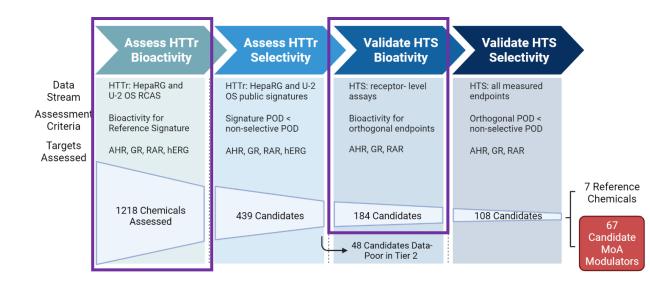


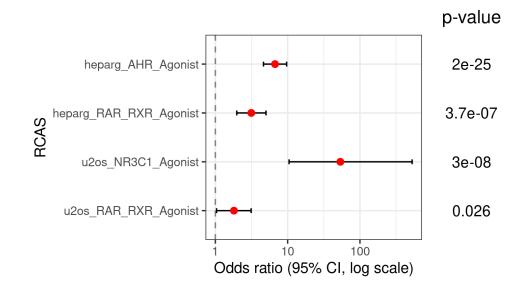
Chemicals annotated for each target passed threshold criteria for related signature, and few chemicals negative for each target passed criteria (except U2OS-NR3C1, in which none passed)



### Integration of Transcriptomics into Chemical Prioritization Framework

<u>Primary Assessment Aim</u>: identify chemicals with selective effects on molecular targets using transcriptional and receptor-level Points of Departure (PODs)


Reference signature potencies compared to non-selective PODs estimated from distribution of >10,000 publicly-sourced signatures (Judson et. al. Tox Sci 2016)


|                        | Assess HTTr<br>Bioactivity             | Assess HTTr<br>Selectivity                   | Validate HTS<br>Bioativity              | Validate HTS<br>Selectivity        |
|------------------------|----------------------------------------|----------------------------------------------|-----------------------------------------|------------------------------------|
| Data<br>Stream         | HTTr: HepaRG and<br>U-2 OS RCAS        | HTTr: HepaRG and U-2<br>OS public signatures | HTS: receptor- level<br>assays          | HTS: all measured<br>endpoints     |
| Assessment<br>Criteria | Bioactivity for<br>Reference Signature | Signature POD < non-selective POD            | Bioactivity for orthogonal endpoints    | Orthogonal POD < non-selective POD |
| Targets<br>Assessed    | AHR, GR, RAR, hERG                     | AHR, GR, RAR, hERG                           | AHR, GR, RAR                            | AHR, GR, RAR                       |
|                        |                                        |                                              |                                         |                                    |
|                        | 1218 Chemicals<br>Assessed             | 439 Candidates                               | 184 Candidates                          | 108 Candidates                     |
|                        |                                        | l                                            | → 48 Candidates Data-<br>Poor in Tier 2 |                                    |



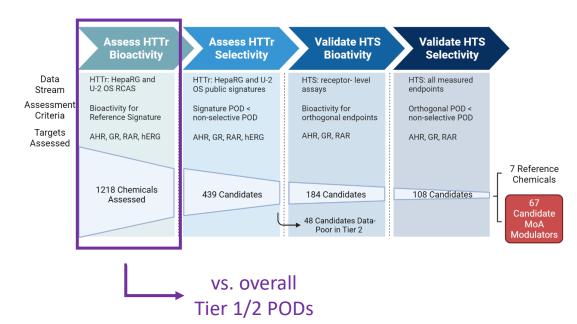
#### Tier 1 Assessment Pre-Filters for Tier 2-Positive Chemicals

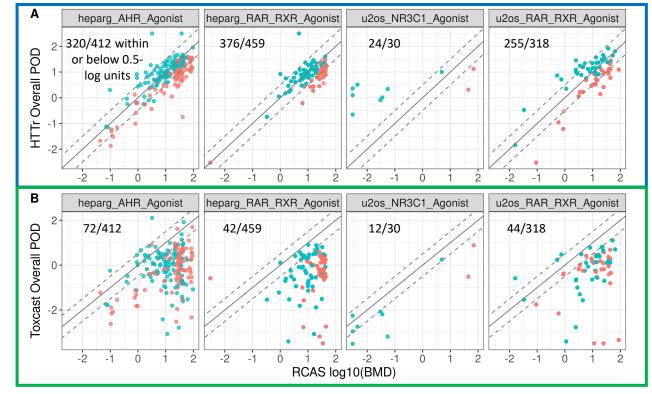
<u>Association between Individual Tier Outcomes</u>: Determine likelihood that Tier 1-bioactive chemicals are bioactive in at least one orthogonal Tier 2 assay





Chemicals positive for HTTr signatures were significantly more likely to show bioactivity in an orthogonal Tier 2 endpoint via Fisher's exact tests


### Target-Specific Potencies Reflect Overall Transcriptomic PODs


<u>Comparison to Previous PODs</u>: Determine difference between Tier 1 potency estimates and overall PODs from Tier 1-2 Assays

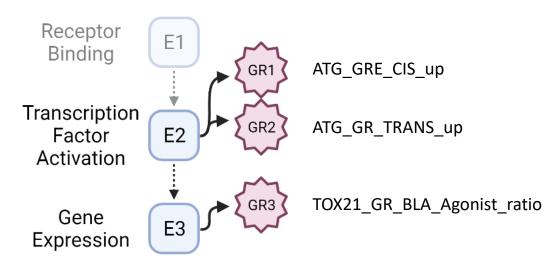
Environmental Protection

Agency

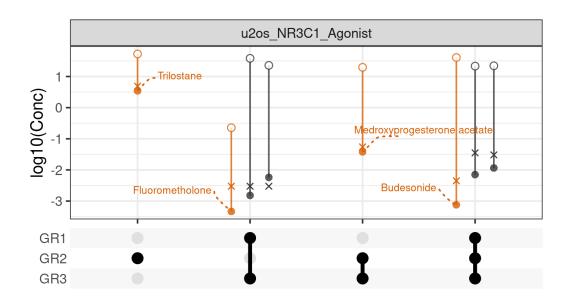
- Tier 1: 5<sup>th</sup> percentile BMD from >10,000 publicly-sourced signatures
- Tier 2: 5<sup>th</sup> percentile ACC from all measured ToxCast endpoints








- 80±2% of Tier 1-bioactive chemicals demonstrate MoA-specific BMD within 0.5-log units of overall HTTr POD or below
- 20±14% of chemicals within 0.5-log units of overall ToxCast POD or below




## Candidate NR3C1 Agonists Reflect Synthetic and Minor Glucocorticoids

Tier 2-Selective candidates demonstrate selective bioactivity in one or more orthogonal ToxCast endpoints:



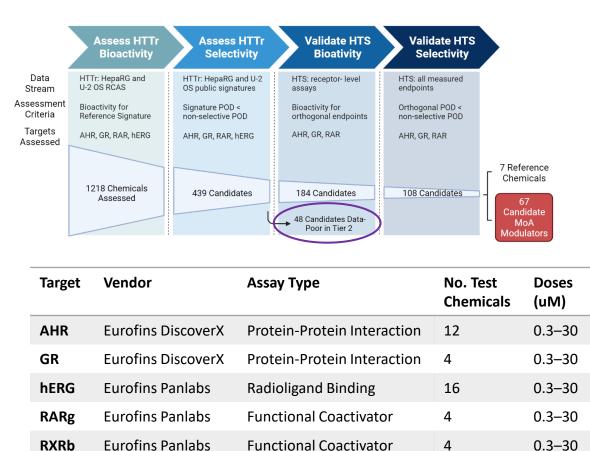
- *Fluorometholone*: active ingredient for treatment of eye ٠ inflammation
- *Medroxyprogesterone Acetate*: repression of interleukin ٠ secretion in normal human lymphocytes and amnion mesenchymal cells via minor GRE induction (Bamberger et al. J Clin Endocrinol Metab 1999, Marinello et al. Front Physiol 2020)

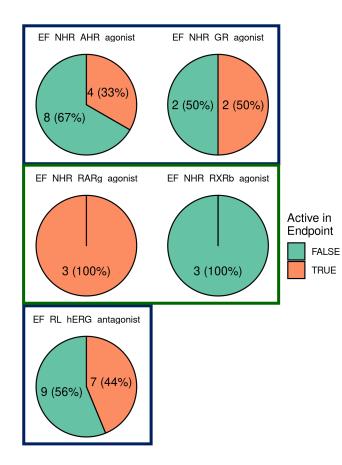


Reference Chemical

- Tier 1 Candidate: heparg AHR Agonist
- Chemical - Tier 1 Candidate: u2os NR3C1 Agonist

Type


- Tier 1 Candidate: heparg RAR RXR Agonist
- Tier 1 Candidate: u2os RAR RXR Agonist


- Tier 2 Burst log10(ACC) POD 0
- Metric Tier 2 Min Endpoint log10(ACC) ۰
  - Tier 1 RCAS log10(BMD)

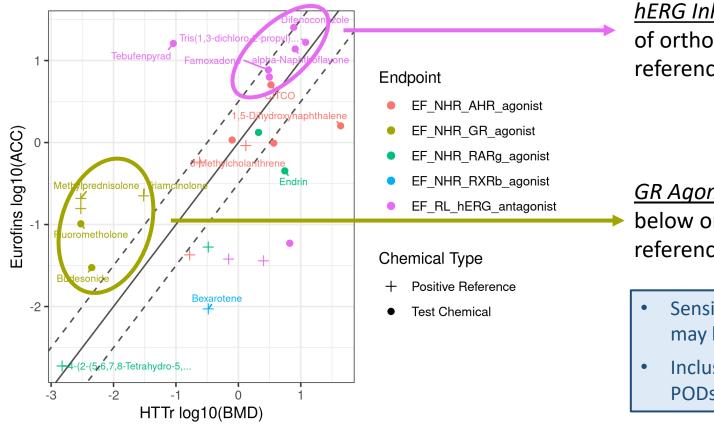


# External Assessment of Data-Poor Chemicals Demonstrates Necessity of Multiple NAMs

Candidates with limited existing Tier 2 data profiled in orthogonal receptor-level assays:






AHR/GR/hERG Candidates: Tier 2 endpoints can further support priority chemicals and deprioritize others

RAR/RXR Candidates: Tier 2 endpoints distinguish between targets with similar transcriptomic profiles



## External Assessment of Data-Poor Chemicals Demonstrates Necessity of Multiple NAMs

Estimated potency values from orthogonal endpoints compared to target-specific Tier 1 PODs:



<u>hERG Inhibitors</u>: Tier 1 PODs within 0.5-log units of orthogonal endpoint POD or below for 6/9 reference and test chemicals

<u>*GR Agonists*</u>: Tier 1 PODs at least 0.5-log units below orthogonal endpoint POD for 5/5 reference and test chemicals

- Sensitivity of HTTr towards individual mechanisms may be dependent on biological context
- Inclusion of multiple NAMs in pathway-specific PODs may be necessary to ensure confidence



## Conclusions

 Univariate gene identification strategy paired with signature-level concentration response analysis allows for assessment of putative MoAs for transcriptomicbased toxicity testing

 Confirmation of transcriptional bioactivity via targeted Tier 2 assays identifies selectively-acting environmental chemicals and pharmaceuticals

• <u>Next Steps</u>: Inclusion of additional data streams to further support tiered testing (e.g. high throughput phenotypic profiling)



## Acknowledgements

#### **Project Mentors**

- Katie Paul-Friedman
- Logan Everett

#### **Management**

- John Cowden
- Sid Hunter

#### **BCTD/CTBB Team Members**

- Joshua Harrill
- Richard Judson
- Imran Shah
- Joseph Bundy
- Derik Haggard
- Beena Vallanat
- Bryant Chambers
- Laura Taylor
- Sarah Davidson-Fitz





**OAK RIDGE INSTITUTE** FOR SCIENCE AND EDUCATION

Shaping the Future of Science

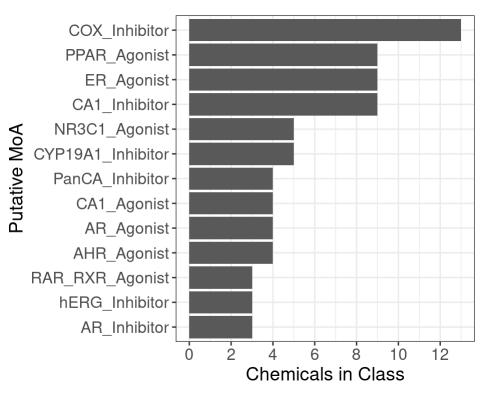


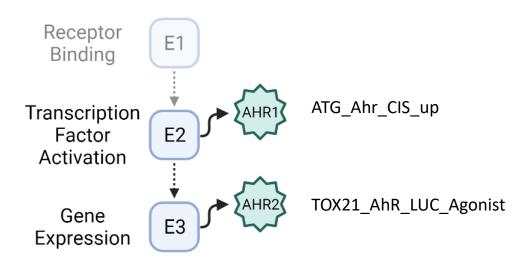
# Literature Mining Links Chemicals to Putative Targets

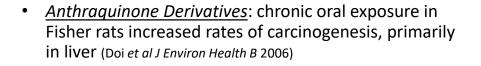
• *RefChemDB*: automated mining of multiple literature databases for chemical-molecular target interactions (Judson et. al. *ALTEX* 2019)

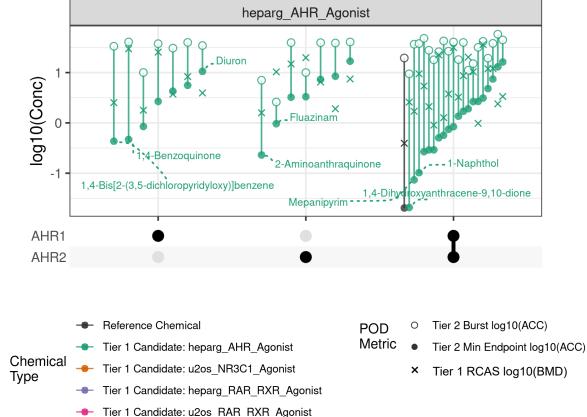
vironmental Protection

- Chemical assignment to molecular targets based on *support*, i.e. number of sources containing evidence of interaction
  - Hierarchical clustering of molecular target annotations based on Jaccard distance
  - Assignment of chemicals to clusters based on support of constituent molecular targets
- **13 clusters represent unique mechanisms-ofaction (MoAs)** after cross-referencing with current high-throughput transcriptomics screening data





Figure indicates chemicals (selective and nonselective) associated with each signature (out of 1218 screened chemicals)


# Candidate AHR Agonists Relate to Known Carcinogens

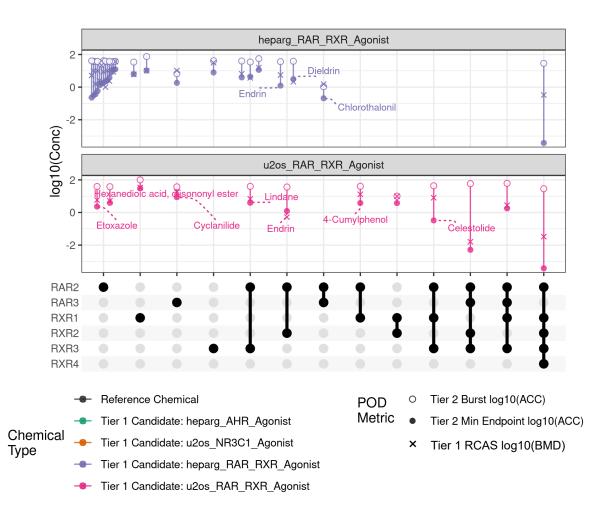

Tier 2-Selective candidates demonstrate selective bioactivity in one or more orthogonal ToxCast endpoints:

vironmental Protection

Agency








## Candidate Retinoid Agonists Relate to ...

| Target  | Cell Type | Tier1+2-Selective Chemicals /<br>Tier 1-Selective Chemicals |
|---------|-----------|-------------------------------------------------------------|
| NR3C1   | U-2 OS    | 8/8 (100%)                                                  |
| RAR/RXR | U-2 OS    | 12/35 (34.3%)                                               |
| AHR     | HepaRG    | 35/115 (30.4%)                                              |
| RAR/RXR | HepaRG    | 24/52 (46.2%)                                               |

United States Environmental Protection

Agency

