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 The ICH Guideline on the Need for Carcinogenicity studies for pharmaceuticals (1995)
introduced and outlined the need and study design of carcinogenicity studies

» Experimental approaches generally requires ~500 rodents and costs around $1.1 million on average
» Results in flawed extrapolation for carcinogenicity

» Neglect the 3R’s of replacement, reduction, and refinement of animals in toxicology testing
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NIH) Sl Development of Alternative Approaches for

 New approaches explore in silico methodologies such as QSAR models, adverse

outcome pathways, and more

» Supported by programs such as Horizon 2020, Tox21, The Seventh Framework Programme 7 (FP7),

and other partnerships

www.nature.com/scientificreports
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Deep learning models offer a beneficial alternative for toxicity predictions where
sufficient training data is available because of their ability to predict complex endpoints

DeepCarc and DeepDILI predict endpoints for carcinogenicity and drug-induced liver
injury, respectively, outperforming conventional QSAR models and state-of-the-art

ensemble methods

» The Tox21 dataset is comprised of ~10,000 compounds
including food-additives, household cleaning products,
medicines, and environmental chemical hazards

» DeepCarc and DeepDILI were applied to predict toxicity for

7176 compounds in the Tox21 dataset

Figure 1: Zhne dTI?SAZ%SChOJE:Z?;IIOQ Oolf O'\)ITP’ NCGC, https://github.com/TingLi2016/DeepCarc
) https://github.com/TingLi2016/DeepDILI
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Figure 2: General workflow of the DeepCarc and DeepDILI models
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Figure 3: Tox21 Probability Distribution. A, DeepCarc. B, DeepDILI.
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Consumer Risk Distribution of High-Risk Compounds
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Figure 5: Consumer use distribution. A, DeepCarc high risk chemicals.
B, DeepDILI high risk chemicals.

* Many of the high-risk compounds were not included in the US EPA’s

Chemical and Products Database

» 79.5% for DeepCarc
» 91.5% for DeepDILI
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Figure 6: ChemMaps® Visualization on the DrugBankMap. A, DeepCarc high risk chemicals. B, DeepDILI top 200

high risk chemicals. (Approved drugs in green, withdrawn drugs in purple, and high-risk compounds as gray rockets)

A. Borrel, N. C. Kleinstreuer, & D. Fourches. (2018) Exploring drug space
with ChemMaps.com. Bioinformatics, (1), 1-3.
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* With our increasingly data driven world and the availability of large datasets such as the
Tox21 dataset, in silico methodologies for carcinogenicity assessment are emerging as
powerful tools to supplement toxicity testing

* Results show that further research needs to be conducted on some of the high-risk

chemicals that are widely used in the consumer space

 The DeepCarc and DeepDILI models will be applied to other datasets such as the EPA’s
DSSTox which contains around 1 million compounds

 DeepCarc and DeepDILI models will be further refined by exploring its performance
with different chemical descriptors and by utilizing a different neural network
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