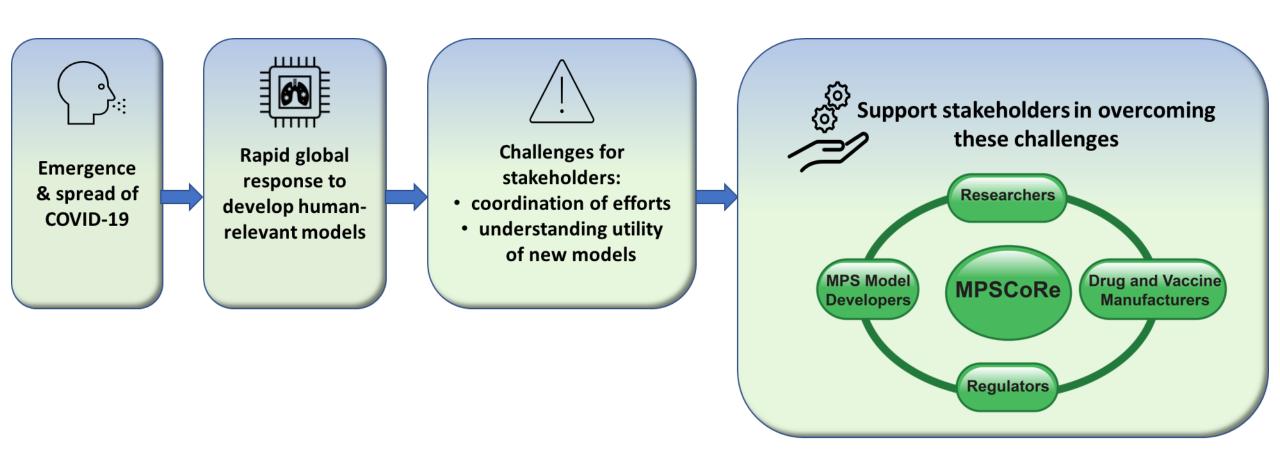


Facilitating Global Connections through the Microphysiological Systems for COVID Research (MPSCoRe) Working Group

Amber Daniel, MTox


Inotiv, contractor supporting the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

ASCCT Webinar January 19, 2023

Outline

- Background
- Objectives
- Activity highlights
- Future directions
- Impact

Background

Founders/Leadership

MPSCoRe Co-Chairs

Anthony Holmes, Ph.D.

NC3Rs

Nicole Kleinstreuer, Ph.D.

NIH/NIEHS/DTT/PTB/NICEATM

Board Members

Kyle Glover, Ph.D.U.S. Army DEVCOM CBC

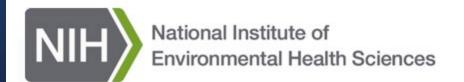
Tyler Goralski, Ph.D.U.S. Army DEVCOM CBC

Candace Kerr, Ph.D.

NIH/NIAID/DMID/OBRRTR

Danilo Tagle, Ph.D.
NIH/NCATS

Mark Williams, Ph.D.
NIH/NIAID/DMID/OBRRTR



Regulators,
Government Agencies
& Contractors

National Centre for the Replacement Refinement & Reduction of Animals in Research

Disclaimer: Participation by individual scientists does not represent the official viewpoint of any government agency.

Biotechnology

Emulating Human Biology

Pharmaceuticals

Current Membership:

Academics & MPS Networks

Leiden University Medical Center

STATE UNIVERSITY

JOHNS HOPKINS

Wyss ≶ Institute

BHARATHIDASAN UNIVERSITY

Current Membership:

Academics & MPS Networks

Lunenfeld-Tanenbaum Research Institute

MPSCoRe Objectives

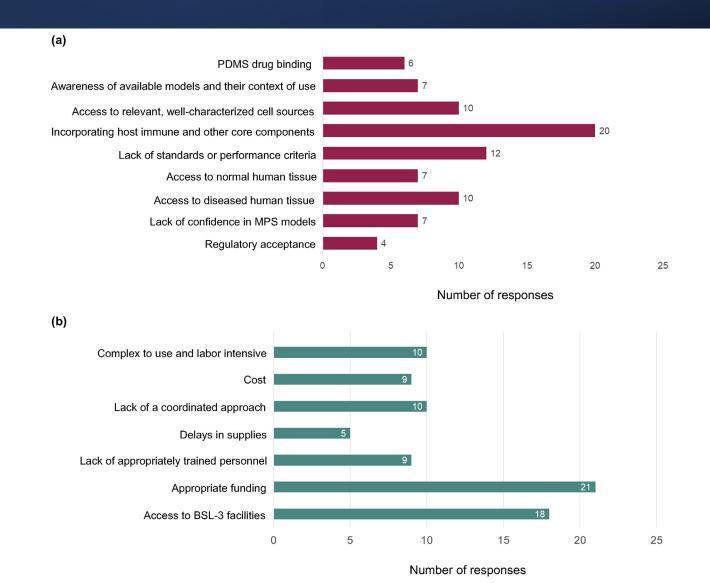
Provide a neutral forum to facilitate **engagement** among international research efforts

Facilitate **connections** between MPS technology developers and potential end users

Work with global regulatory authorities to improve understanding of regulatory needs and decision contexts

Provide **cross-discipline and -sector expertise** in characterizing criteria for model performance and readiness

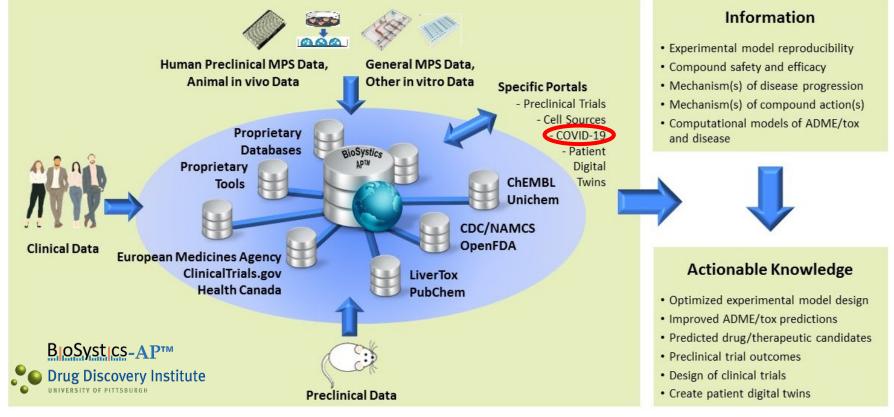
Support the assessment of novel MPS models against concurrently generated preclinical and clinical data

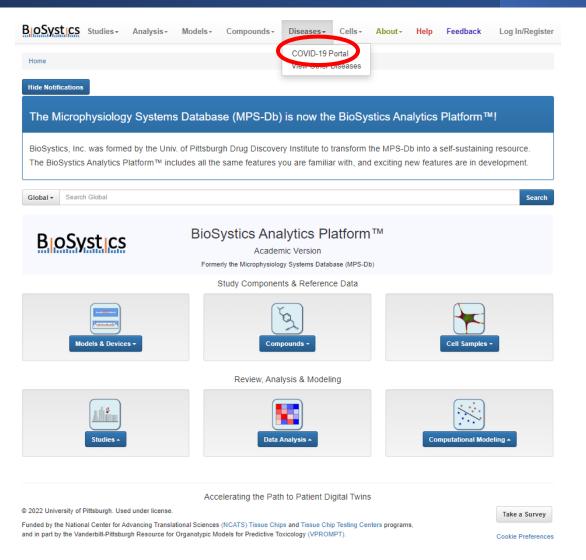

Ensure that the animal reduction and replacement opportunities these model platforms offer are recognized

Identifying Scientific and Practical Challenges Affecting the Use of MPS for COVID Research and Drug Development

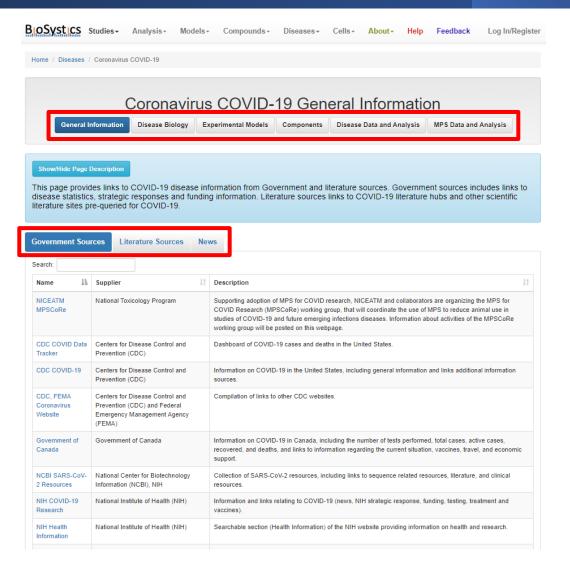
Feature

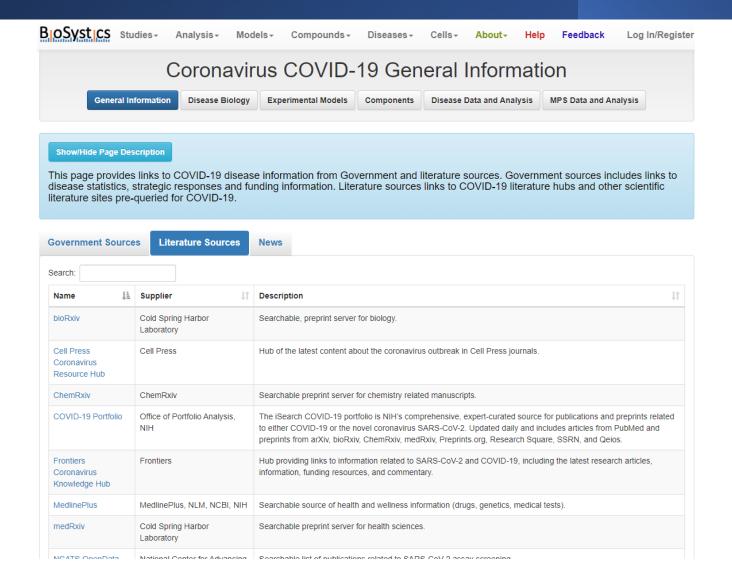
Harnessing the power of microphysiological systems for COVID-19 research


Nicole Kleinstreuer*, Anthony Holmes b.*

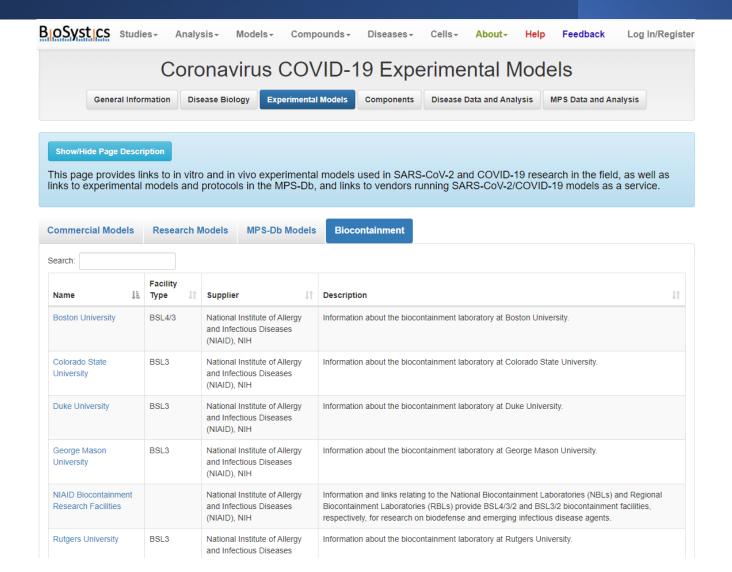

(8)-8

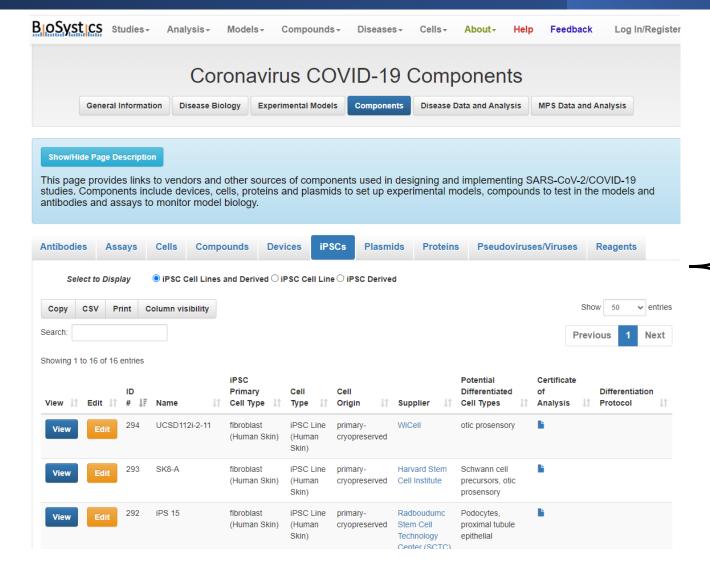
Facilitate connections between MPS technology developers and potential end users


Provide cross-discipline and -sector expertise in characterizing criteria for model performance and readiness



https://mps.csb.pitt.edu/




https://mps.csb.pitt.edu/

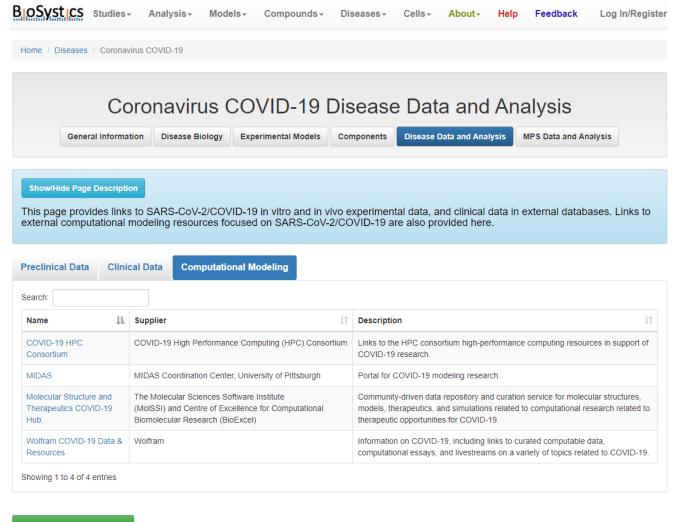
Characteristics of the iPSCs

- Differentiated cell type(s)
- Differentiated phenotypes
- Differentiated maturity level
- Functional profiles

Patient profile

- Demographic
- Known disease conditions
- Genomic abnormalities

Source of cells


- Vendor
- Collaborator
- Others

Protocols

- Isolation of patient cells (e.g., skin, blood, other cells)
- Differentiation to target cell type
- · Preparation for model

Established applications

- Healthy tissue/organ model(s)
 - Disease tissue/organ model(s)

https://mps.csb.pitt.edu/

Suggest Additional Sources

MPSCoRe members may access a **private** list of other member profiles, and share their own information about:

- Organization
- Areas of expertise
- Platforms in use (or of interest)
- Species and tissue types in use (or of interest)
- Applications for the model
- Focus of SARS-CoV-2 and COVID-19 research
- Availability of biosafety levels 3 and 4 facilities

https://mps.csb.pitt.edu/

Proof-of-Concept Study

Support the assessment of novel MPS models against concurrently generated preclinical and clinical data

Data for MPS

method validation **Antiviral Vaccines** In vivo Syrian Human drugs hamster aerosol clinical inhalation testing In vitro Lung airway MPS model cell culture Human-derived synthetic antibodies

Other Activities

- Regular virtual workshops and webinars
- Engagement with WHO to facilitate rapid response to research capabilities for COVID-19 variants of concern

Provide a neutral forum to facilitate engagement among international research efforts

Facilitate connections between MPS technology developers and potential end users

Future Directions

- Possible expansion of working group scope to include other emerging infectious diseases
- Efforts to advance regulatory acceptance of MPS approaches

Proposed Symposium/Workshop

Work with global regulatory authorities to improve understanding of regulatory needs and decision contexts

Symposium/Workshop

- May 2023
- Virtual event
- Raise awareness of opportunities
- Facilitate discussion/collaboration among international regulators
- Feature presentations on MPS models for infectious disease research
 - Potential for regulatory applications
 - Current regulatory approaches
 - Food and Drug Administration <u>Innovative Science and Technology Approaches</u> for New Drugs (ISTAND) <u>Pilot Program</u>
 - European Medicines Agency <u>Innovation Task Force</u>

Impact

	• •				
	Chou et al., 2021 (n = 3,055)	Sheraton et al., 2020 (n = 3,308)	Rogers et al., 2021 (n = 99,905)	Vitalakumar et al., 2021 (n = 190,785)	Bodnar et al., 2021 (n = dlv.)
Acute encephalopathy (psychosis, confusion, memory loss, trouble focusing, behavioral changes, fatigue and 'brain fog')	49%	7%		23% encephalo- pathy; 34% fatigue; 14% confusion	7-32% encephalo- pathy; 8-30% dizziness; 1-4% confusion
Loss of consciousness, coma	17%	5%			4-9%
Seizures	1%			4%	< 1%
Syncope	5%				
Headaches	37%	20%	21%	15%	7-70%
Loss of taste and smell	26%	51 / 59%	37 / 43%	27 / 26%	5-70%
Stroke	6%				1.4-5%
Paralysis, Guillain-Barré syndrome	3%			7%	
Meningitis or encephalitis	0.5%			0.6%	
Myelopathy	< 2%				
Aphasia (loss of ability to understand or express speech)	5%				
New movement abnormalities	3%			Syste	mic homeostasis im
Abnormal tone, weakness	4%		419		Salding starra
Abnormal brainstem reflexes	8%				Cytokine storm
Vomiting, nausea			7-10		
Sensory abnormalities	2%				
Sleep disorder				Pe	enetrate blood-

Infection

Penetrate olfactory

(synapse-connected)

Hypercoagulation,

Vasoconstriction through pericytes

ischemia

(astrocytes, microglia, neurons)

0, 4

Bodnar et al. (2021) report on studies with very diverse group sizes indicated as "n

ALTEX ● Volume 38, Number 4 ● October 2021

Food for Thought ...

COVID-19 - Prime Time for Microphysiological Systems, as Illustrated for the Brain

Ian Kang!, Lena Smirnova!, Jens H. Kuhn², Helena T. Hogberg!, Nicole C. Kleinstreuer³ and Thomas Hartung!,4 ¹Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; ²Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD, USA; 3National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, RTP, NC, USA; 4CAAT-Europe, University of Konstanz, Konstanz,

McMahon et al., 2021

Wang, L. et al., 2021

Date of publication	Article	Main findings (novel findings bold)	
Accepted and published online 26 June 2020	Bullen et al., 2020	ACE2 receptor in all stages of brain organoid development Infection of a small percentage of brain cells 500-fold replication within 72 h and virus shedding	
Accepted: 24 July 2020; published online 4 August 2020	Zhang et al., 2020	ACE2, TMPRSS2, cathepsin L, and furin were readily detected in human neural progenitor cells; virus replication and cell death Brain organoid infection colocalized with neuronal marker TUJ1 and NPC marker NESTIN; replication and shedding	
Accepted 31 August 2021; published online 23 September 2021	Ramani et al., 2020	Virus targets neurons Altered distribution of tau, hyperphosphorylation and neuronal cell death	
Accepted 7 September 2020; published online 8 September 2020	Yi et al., 2020	Spike-containing SARS-CoV-2 pseudovirus transduced neural layers within brain organoids (10% of neurons) ACE2 expression was sustained during the development of brain organoids	
Accepted 16 September; published online 21 September, 2020	Jacob et al., 2020	Neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection	
Accepted 7 October 2020;	Pellegrini et al., 2020	- ACE2 expression in mature choroid plexus cells	
		Tropism of virus for choroid plexus epithelial cells but little to no infection of neurons or glia	
neurochemical pe gical remodeling of	Song et al., 2021a	Infection with accompanying metabolic changes in infected and neighboring neurons No type I interferon response Blocked with ACE2-antibodies or cerebrospinal fluid from a COVID-19	

- Alte land
- Path neuronal networks
- Demyelination
- Postinfectious immune mediated processes, e.g., autoantibodies against neurons
- Mood changes, psychosis
- Chronic fatigue syndrome
- Neuromuscular dysfunction
- Accelerated brain aging and neurodegeneration
- Disturbed neurodevelopment
- Pedrosa et al., 2021 Non-permissive infection of brainspheres reflecting cortical brain-like - SARS-CoV-2 infection of neural cells triggers an increased proinflammatory cytokine response Wang, C. et al., 2021 - Low-grade infection of neurons and astrocytes that is boosted in neuron-astrocyte co-cultures and organoids Increased infection of isogenic ApoE3/3 and ApoE4/4 hiPSCs - Remdesivir treatment inhibits infection Tiwari et al., 2021 Astrocytes, and neurons express low levels of ACE2 and TMPRSS2 and correspondingly are not highly permissive to infection

cortical organoids

- ACE2 expression in infected cells

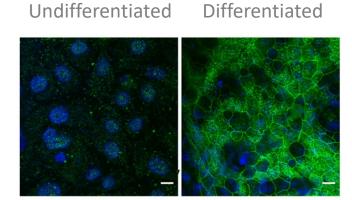
- Glial cells and cells of the choroid plexus were preferentially targeted in

- pericyte-like cells (PLCs) integrated into a cortical organoid enhance

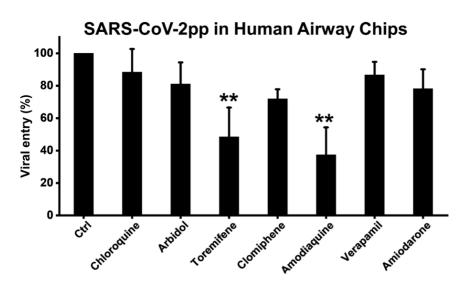
virus spreading to astrocytes and mediating inflammatory type I

No viral replication and cell death involving DNA fragmentation

Depression

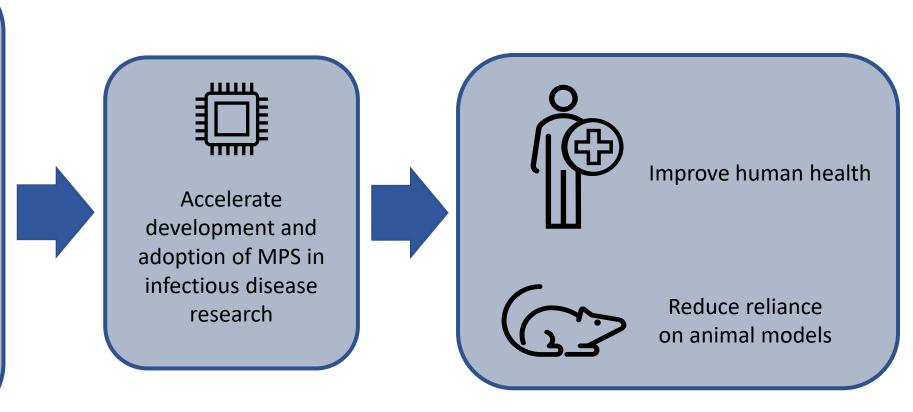

Altered mental status

Anxiety


Impact

Angiotensin Converting
Enzyme Receptor 2 (ACE-2)
Expression

- Extracellular matrix and cell interactions
- Cell shape and cyto-architecture
- Tissue-tissue interactions
- Mechanical forces
- Dynamic flow system
- Resident or circulating immune cells can be included



Si et al., 2021 Nat Biomed Eng | <u>doi.org/10.1038/s41551-021-00718-9</u>

Summary

MPS are human-relevant in vitro platforms to study infectious diseases and develop therapeutics.

- Engagement
- Connections
- Regulatory needs and decision contexts
- Cross-discipline and -sector expertise
- Assessment of novel MPS models
- Ensure animal reduction/replacement opportunities are recognized

Acknowledgments

MPSCoRe Board				
Anthony Holmes (co-chair)	NC3Rs			
Nicole Kleinstreuer (co-chair)	NIEHS/NICEATM			
Danilo Tagle	NCATS			
Candace Kerr	NIAID/DMID			
Mark Williams	NIAID/DMID			
Kyle Glover	DoD/US Army Devcom CBC			
Tyler Goralski	DoD/US Army Devcom CBC			
MPSCoRe Support Staff				
Dave Allen	Inotiv-NICEATM support staff			
Michaela Blaylock	Inotiv-NICEATM support staff			
Cathy Sprankle	Inotiv-NICEATM support staff			

BioSystics-AP™				
Bert Gough	University of Pittsburgh			
Mark Schurdak	University of Pittsburgh			
Proof-of-Concept Study				
Gabriella Worwa	NIAID/IRF			
Jens Kuhn	NIAID/IRF			

amber.daniel@inotivco.com